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i INTRODUCTION

Control of multivariable systems traditionally has been oriented towards meeting require-

ments of system stability, insensitivity to plant variations, rejection of disturbances, steady

state accuracy, and transient performance.

Recently, research has concentrated on the disturbance-rejection problem, and on sensi-

tivity with respe(-L to large plant deviations. The disturbance-rejection problem has been

formulated as a worst-case design problem, starting from the classical "game against na-

ture" work, where such a formulation is explicit, through the more recent work on Ho,-

norm optimization formulation, where its presence is implicit. Alternatively, minimization

of a frequency-weighted Lro-norm is an appropriate problem formulation for achieving im-

proved robustness of system performance to structured and unstructured plant variations.

Frequency-domain-'0ased results on the Hoo optimal and suboptimal solutions have led, how-

ever, to the conclusion that the required controllers are of order higher than the plant. The

recent return to the minimax formulations of the disturbance-rejection problem in the time

domain has shown that Hoo-norm optimal (and suboptimal) solutions exist in the form of

state-feedback and if controls are restricted to output-feedback, in the form of a full-order

(same as the plant) observer with modified plant matrix. A complete set of the necessary

and sufficient conditions for Ho-norm controllers expressed via the appropriate Algebraic

Riccati Equations (AREs) appears in [1] while earlier work on the connection between the

ARE and the H,, norm optimization problem leading to these results can be found in [2].

The recent paper [3], reviews the roots and history of the worst case, i.e., minmax, approach

to disturbance rejection. These results have shown that the rich theory on the structure and

properties of the solutions to the ARE, coupled with the properties of the related Riccati

operator and the Riccati inequality, provide extremely useful and fruitful tools for consider-

ation of the classical problems in design of multivariable systems as well as the consideration

of important new problems.

The research reported herein has concentrated on the development of design methodolo-

gies to meet simultaneously several diverse requirements including transient performance,
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disturbance rejection, robustness, and reliability, using the following classes of admissible

controllers:

" low-order controllers; the goal here is to satisfy the basic performance, disturbance-

rejection, and robustness requirements,

* full-order output-feedback controllers, of the same order as the plant; the goal here is to

improve the reliability of the system by designing controllers capable of withstanding

outages of sensors and actuators, without loosing stability or increasing the H.. norm

bound;

* output-feedback controllers for decentralized systems; the goal here is to meet require-

ments associated with transient performance, disturbance rejection and reliability using

a decentralized control structure.

The presentation is organized with respect to the classes of admissible controllers. Sec-

tion 2 and 3 deal mainly with topics related to design of low order controllers. Sections 4,

5, and 6 deal mainly with topics related to state-feedback and full-order output feedback-

controllers.

The design methodologies we have developed are based on:

" Projective controls, which provide a parametrized family of low-order controllers that

guarantee certain performances specifi, ations are met and possess free parameters to

be used to meet additional requirements.

" The Frobenius-Hankel (FH) norm as a computationally attractive measure of opti-

mality to meeting disturbance rejection and robustness requirements with low-order

projective controllers.

* The algebraic Riccati equation based characterization of H,,-norm-bounding con-

trollers, including

- state-feedback controllers to provide the reference solution for the projective con-

trollers, and
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- full-order output-feedback controllers that meet robustness and reliability require-

ments, or solve the decentralized control problem.

The details of this research have been presented in the references listed below, and in

manuscripts now in preparation. In the following we highlight the main contributions.

As indicated, projective controls represent a parametrized class of low-order controllers

which provide the means for a systematic two-phase design to achieve diverse design objec-

tives. In [4] a methodology was developed which applied projective controls to disturbance

attenuation for large flexible structures and other systems with many degrees of freedom.

The two-stage design first identifies and parametrizes all strictly proper controllers of given

order that retain the dominant system poles (i.e., dynamics) as defined by state-feedback

reference dynamics, and then selects a particular controller by determining the free controller

parameters to minimize a measure of disturbance attenuaticn. The measure utilized is the

FH norm, the minimization of which is computationally attractive and also places a bound

on the Hoo-norm. Restriction of the controllers to the class of projective controllers fixes the

system poles for transient behavior and disturbance attenuation while FH-norm minimiza-

tion then positions system zeros to enhance disturbance attenuation by low-order strictly

proper controllers.

In [5] the two-stage design procedure was extended to design multiple control loops

for transient performance and disturbance attenuation using a low-order controller in each

loop. The H.. optimal state-feedback solution was employed to specify and parametrize

all decentralized projective controllers that now create fixed modes at desired locations.

Then, using the FH-norm minimization approach, the free parameters in all controllers were

determined to place the zeroes and remaining poles to augment disturbance attenuation.

The procedures was further extended in [6] to design decentralized projective controls via

the H .,/FH-norm minimization procedure for the case when the controllers are restricted to

be strictly proper.

In [71 the FH-norm approach to disturbance rejection was applied to discrete-time sys-

tems. A new computational algorithm to minimize the FH norm for controllers of bounded
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order was developed based on the use of the (discrete) algebraic Riccati equat;ons which, in

the limit, reduce to the Lyapunov equations that characterize the necessary conditiois. The

success of the algorithm is attributed to the expanded regions of existence of positive definite

solutions to the Riccati equations, as opposed to Liapunov equations. A nontrivial 5 th order

example illustrates not only the convergence rate of the algorithm but also the nature of

the reduction of the FF. norm, the H,, norm, the Trace norm and the Hankel norm at each

iteration. Also illustrated are bounds on Ho norm in terms of the values of the FH norm:

1--IG(s)HIiF <5 JIG(,s)[[o <5 2VX/HG(s)JJFH

where n is the order of the closed-loop system. In [8] the above approach and the ARE-based

computational algu ithm were extended to cover in a u-.ified approach tbree general classes

of design probiems: disturbance rejection, tracking, and model reference design.

The recent results enabling the construction of Hc,0 -norm-bounding controllers via the

algebraic Riccati equation has stimulated vigorous research into H,, designs, to which we

have recently made a number of contributions. Our research has encompassed many issues

not treated previously by other researchers. These include the development of better bounds

on the H -norm for established ARE-based designs [9], and the study of the properties of

the convex Riccati operator

R(X) = FTx + XF + 7XGGTX + HTH

and the associated algebraic Riccati inequality R(X) 5 0 [10]. These properties were fun-

damental in rederiving in simple terms the state-feedback and output-feedback H -norm-

Eounding controllers and extending the procedure to achieve robust stabilization with an

H -norm bound in the presence of structured uncertainty [11]. Also a new parametrization

of all state-feedback controls and output-feedback controls that that guarartee a specified

H,-norm bound [12] has been obtained.

In [13], [14] the approach was extended to the design of controllers for decentralized

systems. It was shown that a controller of the same order as the system can be developed

for each control channel by constructing for each channel an observer in which the controls

4



associated with other channels are replaced by the estimates of these controls, as they are

defined by the state-feedback solution to the Hoo-norm-bounding problem, and the distur-

bance is replaced by the worst disturbance as described by the same state-feedback solution.

The observer gains for the controllers are determined by the positive definite solution of a

large-dimensional (n x r, where r is the number of control channels) Riccati-like algebraic

equation.

The developed design methodology was extended to the problem of design of reliable

control systems [15]. This includes the design of control systems that possess the following

properties:

" stable controllers, i.e., strongly stable closed-loop system,

" robustness to the loss of a selected subset of measurements, and

* robustness to the loss of a selected subset of control inputs.

The essence of our approach stems from the fact that if X > 0 satisfies R(X) + P = 0,

where P > 0, then R(X) <_ 0 and consequently stability and Hoo-norm bound can be guaran-

teed for the base case, while by judicious choice of P one can guarantee additional properties,

such as those mentioned above. In [16] the approach was extended to decentralized control

structures, and decentralized full order controllers reliable to loss of specified control channels

were developed.

The last topic presented in this report deals with H~,-norm optimal and H0 ,,-norm-

bounding controls for discrete-time systems. Our contributions include the establishment of

a lower bound for the achievable Ho,-norm which complements the known upper bound. We

have shown [17] that
[Am (GT pG)]11 2 < yn,, < Y

where P > 0 satisfies the Discrete ARE (DARE)

P=HTH+ATp[I +(BBr 1 GT)p]1A
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subject to the convexity condition 7y - GTPG > 0. A study of the properties of the

discrete convex Riccati operator and the derivation of the design equations for the output-

feedback Ho-norm-bounding controllers for discrete systems by utilizing a transformation

of the DARE to a Generalized (continuous) algebraic Riccati equation (GARE) are given

in [18]. A lower bound on the achievable H~,-norm using output feedback controls was also

established.

The presentation of the material has been organized into five Sections. Sections 2 and 3

deal primarily with results related to the design of low-order controllers, and in particular

the FH norm and its utilization in design, and with projective controls as a means of defin-

ing a suitable parametrized class of low-order controllers. Section 4 establishes the approach

used in developing results for state-feedback control, full-order output-feedback control, and

decentralized control. Section 5 presents new results on the design of reliable control sys-

tems, for the centralized control problem as well as for decentralized control problems where

the problem of reliability with respect to a loss of certain control channels is resolved. Sec-

tion 6 presents extensions of the methodology. Problems considered include robustness to

structured parametric uncertainty in the plant, parametrization of classes of state-feedback

and output-feedback controls that guarantee an .ff,.-norm bound, and the discrete Ho-norm

optimization problem.
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2 LOW-ORDER CONTROLLER DESIGN BASED
ON THE FH NORM

2.1 Motivation and Problem Formulation

In this report, we present methodologies for design of controllers to achieve closed-loop per-

formance, disturbance rejection, robustness, and reliability for multivariable time-invariant

linear systems. The systems will be represented by state-space models or by transfer func-

tions, as may be appropriate in a particular problem setting. In the remainder of this section

we specify the analytical representation, and the basic design problems considered in this

section.

We consider systems described by

= Ax+Bu+Gwo
yo = Hx (2.1)
y = Cx+Du+w

where x(t) E 1R? is the state, u(t) E R"' is the control, wo(t) E 1RV is the disturbance,

yC(t) E .R' is the controlled output, y(t) E AV is the measured output, and w E Rr is

measurement noise. In order to insure that the desired control is not achieved at the expense

of excessive use of control energy, the controlled output is typically expanded to include the

control vector. Thus we will here consider, in general, the controlled output to be

z KHx = Hx. (2.2)

Two types of controls will be considered: Static output-feedback controls where the controller

is of the form

u = Ky, (2.3)

a particular case of which is the state-feedback controller if C = I, and dynamic output-

feedback control, where the controller is of the form

u = C B,+Dcy. (2.4)
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By introducing the extended system describing the coupled dynamics (2.1) and (2.4), the

dynamic output-feedback control problem can be reduced to an equivalent static output-

feedback problem

Yce = l'e + kt (2.5)

ye = Cx.+ w

with

fi Key. (2.6)

where

e = 0, 00 1 0 '

(2.7)f = [HO], /)=L[D]0, A =[E0,
0]

and with the controller parameters packed into the equivalent gain matrix

K.= [. Cc (2.8)K= B, Ac

We now formulate a standard disturbancc.-rejection problem via the H, -norm: Given

the closed-loop system
i = Fx + Gw (2.9)

z = Hx

wbere w is a disturbance input, z is a system output to be regulated, and the system matrix

F depends on the controller parameters, find a controller K(s) which guarantees closed-loop

stability and satisfies

K(s) = arg inf IT(K)11,0  (2.10)
K(s)

with T(K; s) = H(sI - F)-G. The Ho, norm is defined as

JITikoo = supa.,{T(jw)}, (2.11)

where ao,{.} denotes the maximum singular value. The definition (2.11) signifies that the

Hoo norm represents the largest size of a tre nsfer-function matrix on the jw axis. (If T(s)

is a scalar transfer function, IITIIo, represents the worst-case amplification of a sinusoidal

disturbance input.)
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An interpretation of the Ho, norm in linear systems is that it is the worst-case ratio of

output energy to disturbance energy:

IITII = sup IIz112 (2.12)

WEL2 11W112*
Thus, an equivalent formulation of the disturbance-rejection problem (2.10) is to find a

controller satisfying

K(s) = arg inf sup ziIZ12 (2.13)
K(p) wEL2 I1W11 2

or

K(s) = arg inf sup{{1z11 2 : <WI12 :5 m}, (2.14)
K(s)

which is a "minimax" problem in dynamic game theory. This reformulation really repre-

sents a return to the original formulations of global sensitivity problems as zero-sum games

between the control and "nature" (see for example [3]). This was explicitly recognized in

recent years, and the minimax formulation has since proved to be the proper vehicle for the

characterization and computation of H.-norm optimal solutions. It has also been demon-

strated that the optimal controllers can be implemented as state-feedback controllers, and

that optimal output-feedback controllers are of the same order as the plant.

A related formulation of the disturbance-rejection problem deals with determining sub-

optimal solutions, which are referred to here as Ho-norm-bounding controls: Determine K

(or K,) such that the resulting system is stable and

IITtk< 7, (2.15)

for selected -y greater than the minimum achievable bound. This formulation has advantages

over the H,.-optimization problem, in that an optimal or near-optimal solution is often

characterized by high gains, high sensitivity to design-parameter variations, and excessive

concern with the worst disturbance.

For low-order controllers, the H,,-norm minimization problem and the norm-bounding

problem still do not have a computationally tractable solution. This prompts the consid-

eration of alternative formulations. We have developed the FH-norm formulation of the
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disturbance-rejection problem, and have developed computational algorithms to perform

FH-norm optimization. Solutions to the FH-norm optimization problem are easy to com-

pute, and avoid the high-gain and high-sensitivity problems of Hoo-optimal solutions. A

relation between the FH norm and the HO, norm allows quick determination of an Ho,-

norm bound once the FH-norm optimal solution is obtained. The FH-norm approach can

be applied to both continuous and discrete systems, and is particularly appealing when the

system is linear in the free design parameters. We, therefore, also develop appropriate linear

in the free parameter (LIFP) closed-loop systems representations. In Section 3 we proceed

to combine the FH-norm approach with the projective controls design methodology.

2.2 The Frobenius-Hankel Norm

Recently, Medani6 and Perkins [19] introduced the use of the Frobenius-Hankel (FH)

norm, which is defined as the Frobenius norm on the Hankel singular values in disturbance

rejection and other control problems. The motivation for the choice of this norm is due to its

relationship to more widely known norms such as H 2 and Ho and its good computational

properties which make it suitable for use in optimization procedures.

In this section, the Frobenius-Hankel norm is defined and its properties explored. In

particular, both time-domain and frequency-domain physical interpretations will be given

for the FH norm, and a simple computational method will be developed for calculating the

FH norm. The FH norm will also be directly related to both the H2 and H,, norms. In

the following section, the FH norm will be used as the basis for a parameter-optimization

problem and applied to a model-reduction problem and an optimal controller problem.

The Hankel singular values of a stable system are defined as the singular values of the

Hankel operator associated with that system. (see [20].) If the system is described by

:, = Ax + Bu (2.16)
y = Cx+Du,

with A Hurwitz, then the Hankel singular values ao, i E {1, 2,... ,n} can be computed as

- A,{PQ}, (2.17)
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where P and Q satisfy

AP+PAT+BB T =0 (2.18)

ATQ +QA +CTC =0. (2.19)

Note that P and Q are, respectively, the controllability and observability Grammians of the

system, and can be defined by

P = JOe ABBTeA T tdt (2.20)

Q = 1j eA'tCTCeAtdt. (2.21)

Definition 2.1. The Frobenius-Hankel norm of G(s) E H2~ is

where ai {I-} signifies the ith Hankel singular value.

2.3 Properties of the FH Norm

The FH norm of a given system can be easily computed from its controllability and

observability graminians, P and Q.

Theorem 2.1. Given the system G(s) E H2 and its controllability and observability gran,-

mians, P and Q respectively, then

IIG(s)II. = T {Q (2.23)

Proof From Definition 2.1,

IIG(s)IH FfTf X (2.24)

where E = diag (ai ... a,,). Since there exists T nonsingular such that T-TPT-I E and

TQTT = E [201

IIG(s)I112 = Tr (T-T TT ) E(TT-1 )E (2.25)

=Tr (T T ET)(T-Y2T.-T) (2.26)



-Tr PQ (2.27)

0

Note that FH-norm computation via Theorem 2.1 involves the solution of the two Lya-

punov equatio.i - for P and Q, but avoids the eigenvalue computation necessary to determine

the individual Hankel singular values.

A time-domain interpretation of the FH norm is as follows:

Theorem 2.2. Given the system G(s) E H12 and the impulse response of the system g(t),

then

IIG(s)IIFH = Tr j t g(t)'g(t) dt. (2.28)

Proof From Theorem 2.1,

IIG(s)IH F r Q (2.29)

By definitions (2.20) and (2.21), we obtain

Tr PQ = lim Tr [T eAtB TA T tdt] [T e A T -rCT Ce Ar d (2.30)

which is equivalent to

Tr PQ = )im Tr jT jT [Ce AQt+)Bj [Ce A(t+r)B]T dt dr. (2.31)

Let g(r) _ Ce ATB,

Tr PQ = )irn Tr jj g(t + r)Tg(t + r) dt dT- (2.32)

Tr PQ = lim Tr / T T tTg) dt dr. (2.33)
T-00

Let H(r) A fT+1 g(t)Tg(t) dt.

T

Tr PQ = lim Tr ]H(r) dT. (2.34)

Integrating by parts,

Tr PQ= lim Tr [H(r )TIT _ T rdH(-r)] (2.35)

12



Tr PQ= lim Tr [I(T - t)g(t + T)Tg(t + T) + tg(t)Tg(t) dt]. (2.36)

In the limit as T -- oc, g(t + T) -- 0 and thus

Tr PQ = Tr j tg(t)Tg(t) dt. (2.37)

0

The following result provides frequency-domain properties of the FH norm.

Theorem 2.3. Given the system G(s) E H2 and the frequency response of the system

G(jw) = G(s) l=,j., then

1_ 11 
0  dG(jw).IG(s) 17H Tr d" G(jw)" d,. (2.38)IIG~s)I 27r _oT d

Proof Applying Parseval's Theorem to (2.31) yields

IjG(s)IIF'H = 0 Tr .F[tg(t)]'[g(t)j dw (2.39)
= cojTr f 0 "

_ j jTr (---jw-) G(jw)* dwj (2.40)

2.4 Relationships with Other Norms

The Frobenius-Hankel norm can be related to the H00 norm through the Hankel singular

values of the system.

Theorem 2.4. For a stable system

&(G(s)) _ IIG(s)IIFH < ZajIG(s)} (2.41)

4 i=1

and
--IG(s)lI fH <5 JIG(,)1I. < 2V'fflIG(s)IIFH. (2.42)

Remark: It has been shown [20], that

n

,(G(s)) < IIG(s)llo < 2Fa,(G(s)). (2.43)

13



Proof Consider (2.41). Clearly, =,or? > &2, while

n n

i=lj=
n ni n

- 2 + 
(2.44)

k=1

nn

k--

= = IIG_>)IIF()H .T=[' 2..o](.5
i=1

min ea, = [1 1...1 , (2.46)

subject to (2.45). This leads to the maximizer a = Ae where A must satisfy (2.45), producing

A2n = IIG(s)II H. But then

Cosie = eTa =a v eTe - An = V'IIG(s(s)FH. (2.47)

For all other values of the a,, V-= o <vrIIG(s)IFH and so

n

The FH norm can aso be related to the sensitivity of the .2 norm to a shift of the

eigenvalues of the system along the real axis.

Theorem 2.5. Let the egenvalues of the system G(s) be given by Ai = A + a, then

EaiIG() =eT= eTe=A =IIG(s)IIH (2.49)

14



Proof The shift in eigenvalues can be expressed by assuming A has the form

A(c) = A, + al. (2.50)

Let

J = IG(s)11 = Tr PCTC. (2.51)

Then
dJ Tr pCTC, (2.52).a --o

where P, satisfies

AP. + P0 AT + 2P =0. (2.53)

Let Q satisfy

QA+ATQ + CTC =0 (2.54)

then using the properties of the trace, it can be shown that

Tr pXCTC = 2 Tr PQ. (2.55)

Thus dJ I'  =2T Q

=2Tr PQ. (2.56)

0

This expression may be useful in establishing robustness properties of the system.

2.4.1 Example

To illustrate the relationship between the various norm and the effect of their minimization

on the system response consider the system

-a0 0 0
X ~ = 2 lAx+[AIu+[AIw

YC = [1 O]
y = [0 l]z

with control restricted to

u =-ky = -[0 k]x.
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It is then easily shown that

IIG()I = (1 + )k + = arg n IG 2
2ak , + a

and

IG(s)ll12 = (1 + c,2 )k 4  + 2f3 k2 + 2 2  k 2  = g n hIIlIFH - V/+FH-4k 2aj2  FH k-gt2

Moreover,

,IG(s)II = J(w(k), k) M- max{ ( 2 + k2(  + a2)

and so

J(w(k), k), k2 < C, + -2 +1

IG (s)ll 
=

k2(1 +a 2) k2 >a+a a2 +2
a2  -a2 +

with w2 (k) defined implicitely as satisfying the necessary condition

W4 + 2k 2 (1 + a 2 )w2 _ = 0

and

6=a 2 (a2 +2)-(1+C 2)(k2 _-a) 2

Because for b > 0, IIG(s)IloI is unimodal and exhibits a maximum, and is monotonically

decreasing for 6 < 0, it is determined that

k2 = arg min II(s)112 1 + 2a 2-_ V/1 -

The dependency of k2, k ,H and k.2 on a is depicted on Figure 2.1.

It is noted that as a --+ oo, all gains are bounded, so that high oscillation will result in

all cases. The reason is that consideration of the control as a-1 additional controlled output

precludes the use of large gains. If the control is not weighted then one obtains

k 2 +aJGa(s)ll2 - a
k4 + 2a 2

IG(s) it~ - 4k 2a2

16



control gains with the control weighted-in

..........- "................

1.2

0.8

0.6-

0.4.

0 1 2 3 4 5 6 7 8 9 10

Figure 2.1: Optimal gains.

and
JIG~ 112W

2 + k2

IIG(s)Il0 = (w2 - a)2 + k2w2 .

From this follows
Q = a

3a

00 2

and the results are displayed in Figure 2.2. Thus, we see again, the characteristic property

that the FH norm optimal solution provides more damping than the LQ solution, but not

as much as the Ho,-norm optimal solution which, of course, reduces the peak of the gain

characteristic. In this case, for all values of a, the H00 norm solution guarantees a damping

ration = 1 = 0.6124, the FH norm solution guarantees 0.5946, which the H-2

solution guarantees - 0.5.
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control gains with no weighting on the control

4

3.5

3-

2.5

'A 2

1.5

0.5

0 1 2 3 4 5 6 7 8 9 10

a

Figure 2.2: Optimal gains.

2.5 Frobenius-Hankel Norm Optimization

In this section, a common framework for solving optimal FH norm problems will be pre-

sented. Necessary conditions for an optimal solution will then be formulated and solution

methods for solving the necessary conditions will be proposed. In later section3, specific

problems will be solved under this framework, and in particular problems related to the

design of projective controls.

Let G(s) be a strictly proper system with transfer function

G(s) = C(O)(sI - A(O))-'B(O) (2.57)

parameterized by 0. The general method used to compute optimal FH norm solutions

involves determining the optimal values of the free parameters of the co itroller. For example,

in the case of the model-reduction problem, the parameters represent the reduced-order

system, i.e., 0 = (A, B, C, D). In the controller-synthesis problem, the parameters represent

18



the controller, i.e., 0 = (A,, B,, Cc, D). The FH norm of G(s) can be computed as

J = IIG(s)ll-H = Tr {PQ} (2.58)

where P and Q satisfy (2.18) and (2.19). The optimization problem is, thus, to find 0 such

that the criterion (2.58) is minimized subject to the constraints (2.18) and (2.19).

This constrained optimization problem can be converted to an unconstrained optimiza-

tion problem using Lagrange multipliers. The augmented criterion is given by

J = Tr {PQ + M(AP + PAT + BBT) + L(ATQ + QA + CTC)}. (2.59)

Using this approach, necessary conditions for an optimal solution are

i =ATM + MA+Q=0 (2.60)

i = AL + LAT + P = 0 (2.61)
oQ

oj
'= AP + PA T + BB T =0 (2.62)

L

ai AT Q + QA . C C  0 (2.63)19M

= Tr {2AT(MP + QL) + BTMB + CTCL} =0. (2.64)

In general, these equations can not be solved for the optimal 0 directly. However, iterative

methods may be applied to this problem.

A Gradient algorithm approach to the solution of this problem is to find the direction of

steepest descent and to take a step in that direction. The direction of steepest descent is in

the direction of the gradient with respect to 0; the gradient of J with respect to 0 is given

by
dJ i iJ dP OJd, do L .A i d(6
d O + "dP OQdO + T d Md" (2.65)

If P, Q, L, M satisfy (2.60-2.63), then

d- a 
(2.66)

o 00'
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The parameter update is given by

O+1 = Oi - f-V (2.67)

Basic steps of the algorithm are given in Figure 2.3, for c fixed. This method has been used

1. Select 0, so that A(Oo) is stable.

2. Let i = 1.

3. Solve Eqns. (2.60)-(2.63) for L, M, P and Q.

4. Calculate Oj+, from Eqns. (2.66) and (2.67).

5. If the parameters have not converged, let i = i + 1 and go to 2.

Figure 2.3: Gradient Algorithm.

in [4] to solve the FH optimization subproblem, associated with the decentralized control of

a large space structure using low-order controllers. The steepest decent algorithm results if

G is selected so that O+1 is the minimum of J along the gradient direction.

An alternative approach, referred to here as "the Riccati approach", [21,8] uses Riccati

equations instead of Lyapunov equations. The Riccati equations are constructed so that the

iterative solution converges to the solution of the Lyapunov equations.

The iterative equations are of the general form

ATM,+, + M,jA - Mi+,RMi+l + MRM + Q = 0
ALj+1 + L+jAT - Li+,1RLi+l + LRL, + P = 0
AP+1 + P+1 AT - Pi+ 1RPi+i + PRP + BB T = 0 (2.68)

ATQ,+1 + Q~iA - Qi+1 RQi+l + QjRQj + CTC = 0

where 0i is the solution of (2.67), or the solution of

oj160 = 0, (2.69)

if (2.69) can be solved. The second possibility occurs naturally in the discrete case and so

the algorithm will be discussed in Section 2.6 in greater detail. Note that if this iterative
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algorithm converges, it converges to the solution of the corresponding Lyapunov equations.

The Riccati approach has the important feature of being solvable for all stabilizable and

detectable systems. The Riccati approach should be used when e is fixed, since an unstable

plant may then result at any given iteration. However, solving Riccati equations is more

time-consuming at each iteration than solving Lyapunov equations; therefore, the increased

assurance of convergence is obtained at the cost of greater computational burden.

2.5.1 Optimal model reduction

The disturbance-rejection problem is a useful paradigm for other problems, in particular for

the model-reference problem and model-reduction problem. In the model reduction problem,

given an nth-order system

G(s) = C(sI - A)-'B + D, (2.70)

the problem is to find a k-th order approximation

0(s) = 0(i - A)-, + b (2.71)

that minimizes hIG(s) - O(s)IIFH.

The error system as shown in Figure 2.4 is

Figure 2.4: Model Reduction Problem.

E(s) = G(s) - G(s) Ce(sI - Ae)-'B, + D,, (2.72)

where
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In order for the error system to be strictly proper, i.e., that e(t) - 0 as t -- oo, we

require D, = 0. This is satisfied by letting D = D.

The necessary conditions from (2.60)-(2.64) are:

= ACP+PAT +BB T = 0
8L.
a- = ATQ + QA. + CTC. = 0
,IM (2.74)

'9J-- = AeM+MA,+P=OO' = ATM + MAC + Q = 0

and

and = 2(MP+QL)
22 =0

'9J
J= 2(M 21B + M 2 2 3) =0 (2.75)

a 4_J = 2(-CL12 + CM 2 L) = 0.

The gradient steepest descent or Riccati algorithm can now be used essentially as described.

2.5.2 Disturbance rejection

Given the plant (2.1) controlled by the dynamic controller (2.4), the closed-loop system

reduces to (2.5)-(2.7), i.e.,
A = A + f~k¢
f3 = / + fkfD (2.76)

0 = ft +AkkOb = kkb
with

A [' A 0 ~ [f b B ~l~ 0 (2.77)

[A 0], 6= G f [ (2.78)

In order for the closed-loop system to be strictly proper, we require ) = 0. Thus one

restriction on the optimal solution is

EbDb = 0. (2.79)
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P(3)

Figure 2.5: Plant with controller configuration for disturbance rejection.

The necessary conditions for an optimal solution are then

P= p+ PAT + BT = 0

AJ _iTQ -"Q - T-

+QA+C C=0 (2.80)

= ATM +MA+Q=O

'9J = AL + LAT + P = 0aQ

and

J 2[B T (MP+ QL)O T + B T M(o + bJkb))bT + E T(ft + Wf')L(Tl. (2.81)aK

Satisfying the condition EDD = 0 leads to three special cases:

(i) Strictly Proper Controller (D, = 0)

(ii) Noise-Free Measurements (D = 0)

(iii) Cheap Control (E = 0)

Of course (2.79) can be satisfied in a combination of these three cases. This would imply

that some channels of the control would be strictly proper, some noise-free, and some with

cheap control.

If the measurement noise (DDT) is non-singular and the controlled outputs include a

non-singular control term (ETE), then the optimal controller must be strictly proper. This

case is handled by setting D, = 0 and removing it from the set of parameters to be optimized.

23



Thus the necessary conditions for an optimal controller are (2.80) and

Oja- = 2(MP+QL) 22 = 0

a = 2[(MP + QL)2 1CT + M22BoDD] - 0 (2.82)
aq9
a = 2[BT(MP + QL)12 + ETECoL22] =0.19CC

If the measurement outputs of the plant are noise-free, then D = 0 and the necessary

conditions for an optimal controller are (2.80) and

49 = 2(MP + QL)2 2 = 0

2[(MP + QL) 21CT + (M22Bo + M2,BD,)DDT ] = 0
OBc (2.83)

- 2BT(Mp + QL) 12 = 0

aiJ = 2[BT(MIIBD, + M12B.)DDT + BT(MP + QL)iiCTI =.

If, in addition the controller is non-dynamic, i.e., C(s) = D,, then the closed-loop system

is

G(s) = (H + EDC)(sI - A - BDCC)-'G. (2.84)

The necessary conditions for an optimal control are (2.80) and

ai = B T(LP + QM)CT + DCMCT =0. (2.85)

2.5.3 Example

Given the plant

-0.4335 -0.0118 -0.9231 -0.4643 0.8854 -0.7382
-0.9160 -0.5185 -0.4110 -0.0779 0.1747 1.5473

[ A IB -0.0414 -0.6085 -0.7507 -0.8901 -1.4939 0.8204 (2.86)
C D ] -0.4828 -0.0916 -0.2014 -0.9215 -1.1423 -1.5361

0.9782 1.9938 -0.8140 -0.8819 0 -1.5443
0.1821 0.3387 1.6250 1.0326 0 0

determine a second-order, proper, stabilizing controller K(s) which minimizes the FH norm

of the closed-loop system.
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To start the algorithm, an initial stabilizing controller is needed. Such a controller is

given by r -1 0 -0.0118 1
K(s) = 0 -1 -0.0555 . (2.87)

L 0.0846 -0.1728 0 J
The optimal controller was computed by implementing the steepest decent algorithm

using Matlab. Figure 2.6 shows the FH norm (G = B, H = C) at each iteration of the

90

70

60-

30-

20

0
2 4 6 8 10 12 14 16 is 20

Figure 2.6: Iteration history of FH Norm of System.

algorithm. The FH norm was reduced from its initial value of 84.9 down to 5.6. The optimal

controller is determined to be

[ -0.7966 -0.2337 -0.4563
K(s) = -0.2502 -0.7149 0.5331

0.4515 -0.5542 0.1822

2.6 Discrete-Time Systems

In this section, we describe in detail the FH-norm approach to disturbance minimization in

discrete-time systems, and propose the new Riccati equation based computational algorithm

for the design of an FH-optimal controller of selected order.

The formulation, as will be seen, reduces to a linear-in-the-free-parameters (LIFP) system

description coupled with a performance criterion that leads to a Parametric Optimization
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(PO) problem. The necessary conditions for optimality are derived, and a fixed-point algo-

rithm involving the iterative solution of Lyapunov equations is suggested by the structure of

the necessary conditions. Presently available algorithms require an initially stable system.

To resolve this initialization problem and aid convergence, a new algorithm is proposed which

involves the iterative solutions of discrete Riccati-equations.

2.6.1 The disturbance-rejection problem in discrete-time systems

Consider the disturbance-rejection problem for the system in Figure 2.7, where u is the

Plant

Figure 2.7: System with external disturbance.

control vector, is the controlled output vector, w is the disturbance vector, and y is the

measured output vector. The goal is to suppress the response in the output C due to the

disturbance w. Consider the linear, time-invariant, discrete-time, stochastic state-space
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system
Xk+1 = Axk+Buk+Ewk

yk = Cxk+ Fwk (2.88)
Ck = Dxk

with xk E Jr, Ck E Rni', Uk E R', yk E B?, Wk E 1W, and EIwo wk < oo, and with the

linear controller
k+1 = Klk + Kyk, (2.89)

uk = K 3f + K4yk

where G E 1R? and all the parameters of the dynamic compensator are free design parameters.

Letting X,.k [XT  T]T, we get the closed-loop system

Xe,k+l = Acxe,,k + Ecwk (2.90)
Ck = Dcx.,k

where

AA+ BKC, E=E+!bKF, De=[D 0]E=[ET 0T], P=[FT 0 ]T

and

A A ] f B 0] 0=C 0 K=[K4 K3 (.1

Then G,(z) = D,(zI - Ac)-E, represents the closed-loop transfer function from the distur-

bance input to the regulated output C(z) = G,(z)w(z).

In the spirit of the Ho-norm optimization, the optimal solution to the disturbance-

rejection problem can be defined as

K 0 = arg min IIG,(z)II. (2.92)

where

IIGc(z)oo A max oam{G.(z)}. (2.93)

Finding a minimum with respect to the H. norm, however, presents computational

problems as formidable as in the continuous case since there are no efficient algorithms to

solve the ensuing minimax problem involving a controller of constrained structure.

The FH norm of the discrete-time system (2.90), similar to that of a continuous-time

system, is defined in terms of Hankel singular values and is computed from the product of
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the controllability and observability grammians, P and Q. For A, a stability matrix, P and

Q are defined in the discrete case as
00

P = A EE(A)k, (2.94)
k=O

Q A'E(Ac*)k D.*Dc Ac*, (295)

k-O

and satisfy the Lyapunov equations

AcPA:- P + EcE, = 0 (2.96)
AcQAc - Q + D*Dc = 0.

The Hankel singular values are defined as

o,(G (z)) Q), (2.97)

and can also be derived from the singular values of the Hankel matrix [20,221. The FH norm

is given by
n+s n+(

IIGc(z)IIFH E Zo(Gc(z)) = ZA(PQ) = VTr (PQ) (2.98)
- i=1 ,i=1

if IA,(A)I < 1 Vi. Recall that even though the matrices P and Q are not independent of

state transformation, the eigenvalues of the product PQ are invariant under such transfor-

mations [20].

As has been shown, the FH norm and the Hankel singular values satisfy the bounding

relations n+S~ n+j

o.(G.(z)) < Zoa(Go(z)) = IIGc(z)IIFH < Za',(G,.(z)) (2.99)
"=1 i=1

and
n+a

a,,(Gc.(z)) _ IIGo((z)j. __ 2Z,,i(G.(z)). (2.100)
i=1

Introducing the no:ation for the Trace-norm (T-norm) and Hankel norm

n+8

ICo(z)llT = Zoj(Go(z)), IGc.(z)IIH = oa,,.(oG(z)) (2.101)
i=1

and the interval I of the real line defined by

I '_ [JIG(z)lIH,211G.(z)IIT], (2.102)
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it follows that IIG.(z)llk E - and IIGC(z)IIFH E 2. Recall also that if IIGc(z)IIFH = 6,

then minJIG(z)IIH = 7*.6 while max IIGc(z)UIT = vf, and so the largest that I can be is

['* 6 ,2v 61, and, similarly, the smallest 1I reduces to the set [6,26]. Thus, as IIGo(z)IIFH is
reduced by minimization the interval I is also reduced and the FH norm and the H,, norm

are forced to move closer together. The FG norm minimization procedure thus provides a

near-Hoo-optimal solution, as depicted in Figure 2.8 (where G,(z) is the transfer function of

211GcIIT

IIGcIt

IIGIH e o211Gct TI, N UIGCtlIFH

0.3. 0 , .lGctllH

W t K Op ftm ed K

Figure 2.8: The effect of optimization on 1-.

the optimized system). This will be amply demonstrated by an example in Section 2.7.1.

2.6.2 The FH-norm optimization

The FH-norm optimization in discrete systems problem reduces to the minimization of

the criterion

g1 = IGc(z)IIFH = tr (PQ), (2.103)
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where P and Q satisfy the Lyapunov equation (2.96). The goal of the optimization is to find

K0 such that

K= = arg min tr (PQ). (2.104)
K

To convert constrained optimization to an unconstrained optimization, we define again

the Lagrange multiplier matrices L E 1R":, and M E En"X, L = LT, and M = MT,

following the approach developed for continuous-time case. This leads, in the discrete case,

to the extended cost function

J= Tr [PQ + M(ACPA T- P + ECEY) + L(A TQAc - Q + D TDc)] (2.105)

and the following necessary conditions for a minimum:

- ATMAc - M + Q = 081?
'9J

= AoLAT -L+P=0oQ (2.106)
a'- =AP T _ p + E CE T = O

af= AcPA'PEE=
'9J = ATrQA -M+DTD =0OL

and

J 2[C(PATM + LATQ) + 'ETM]B? 0, (2.107)

where the derivative of a scalar with respect to a matrix is defined in the usual sense. We see

that equations (2.106) are quadratic in the parameter matrix K, and that equation (2.107)

is linear in K. Equation (2.107) can be rewritten in the form

U1KV + U2KV2 = A, (2.108)

where

U1  - BT MB, V1 = pCr T + FFT , U2 = B3T QB, V2 = CLOT

A = -BT[(MAP + QAL)OT + M/F T ].

The linear-in-the-parameter form of condition (2.107), which does not arise in the analogous

continuous-time problem [23], arises here because of the structure of the discrete Lyapunov

equation.
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The use of numerical techniques is the only viable approach to the solution of the above

necessary conditions. Fixed-point or feasible direction algorithms as suggested by the form

of the necessary conditions, may be considered. However, convergence of the feasible direct

algorithm is slow while convergence of the fixed point algorithm is not guaranteed: At some

iteration, a destabilizing Kj might arise, so that the matrices P, Qj, Lj and Mj will not

be positive definite, and the algorithm cannot continue; or, while the algorithm might never

encounter this difficulty, it may still not converge. Problems such as this frequently occur in

parametric optimization problems (see [24]).

2.7 The Riccati-Based Algorithm

To improve computational efficiency, resolve the initialization problem [24], and achieve

convergence, we use an algebraic Riccati-equation approach for computing the FH-norm

optimal controller. This approach is the forerunner of the Riccati approach mentioned in

Section 2.5 for continuous-time case, and is treated here in greater detail. The use of the

Riccati equations is again proposed because of robust properties of positive semi-definite

solutions of these equations, and because of their relationship to the corresponding Lyapunov

equations (2.106).

Consider the Discrete Algebraic Riccati Equation (DARE)

APAT - P + S - AP(P + R)-PAT = 0 (2.109)

for S > 0. R > 0. This has the same terms as the Lyapunov equation except for the

"rational" term AP(P + R) - PAT. Recall the following fundamental property.

Lemma 2.1 [25]. If (A, S) is a stabilizable pair, then there exists a P > 0 that solves

equation (2.109). 0

If S is positive definite then (A, S) is obviously stabilizable, and so P is positive defi-

nite regardless of the stability of A. This fact is exploited to construct an algorithm that

overcomes the initial stabilization problem. This property also guarantees the continuation
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of the algorithm through successive iterations by generating positive definite solutions to

Ricc. ti tquations constructed from the Lyapunov equations (2.106).

To adapt the Lyapunov-equation type conditions into a Riccati setting, we examine, for

example, the jth iterate of the third equation in (2.106)

AjPj+,A', - Pj+l + Sj (2.110)

where S. = E,jET3 . We may expand this into the DARE form

Ac,jPj+,Ac, - j+1 + Sj'- ACjPji+j(Pj+I + R)- Pi+,A T. (2.111)

where S is now given by S = S + P(Pj + R)-'PIA1 . If P is a fixed point of this

algorithm, (i.e., if Pj --+ P as j - oo), then in the limit (2.111) converges to (2.110). We

use the same expansion technique on the other three Lyapunov equations and construct an

algorithm based on the iteration of the obtained Riccati equation in the spirit of fixed point

algorithms.

Algorithm:

1) Set K (arbitrary), R > 0, c > 0, and let P = Q, = L, = M, = I

2) Compute A,,j = A + B Kj ,CE,,j = E + &Kj F

3) So" e the DARE equations

0 = A,jPj+,Aj- Pj+1 + Slj- A¢, P+1 (P+j + R) J+ 1 ,J

0 = ATJQ+ 1A, - Qj+i + S2j - A,.Qj+1 (Qj+I + R) 1 Qj+Ac,j
0'J Lj+ A, T  L,+l + S3j - AjLj+1 (L,+ + R)Lj+,A,.i

0 = A T-j M3 1 + S43 - A T.Mj+1 (Mj+1 + R)-Mj+IAc,j

for Pj+i, Qj+i, Lj+i, and Mj+1 , where

Stj = Ec- ,., + A P-(P + R) 1 PA T,.

S2) = Dc c + ATQ3 j(Q + R) QjAc,i
5-. = P + Ac,iLj(Lj + R)-LAc,.i
S41 Qj+ ATMJ(Mj + R)-'MjAc,j

4) Solve equation (2.108) for K,+,
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5) If IIK,+1 - KilI > e, go to 2); else stop.

This approach has several appealing features. First of all, P and Qi (and hence L3 and

M.) always have positive definite solutions if Sij and S2j are positive definite. This will

always be true if P and Qo are chosen positive definite (e.g., Po =Qo = I). The second

feature is the introduction of the matrix R in (2.111) which can be used to control speed of

convergence of the algorithm. This property can be seen in that for R > 0 and large, the

Riccati equation (2.111) approaches the corresponding Lyapunov equation (2.110).

If K, is not stabilizing for some j > 0, the algorithm still generates positive definite Pj, Q3,

L., M,, and so the updates of Kj may still be obtained uniquely from (2.108). In particular,

any K. E fp+s)x(r+s), can be used as an initial starting point, (unlike algorithms that iterate

on Lyapunov equations), resolving the initialization problem. The Riccati solutions may be

obtained by eigenvector or Schur methods [26]. Equation (2.108) may be solved by Schur

methods [27].

2.7.1 An example

The example used is a fifth-order plant and second-order controller. There are three

measured outputs, two control inputs, two disturbances, and two regulated outputs. The

system was open-loop unstable and the initial gain, chosen at random, was not stabilizing.

The matrices in this example are

0.7090 0.2174 0.2156 0.2471 0.2714 0.4218 0.6696
0.9167 0.6322 0.4611 0.1519 0.1583 0.9280 0.7232

A = 0.4492 0.0208 0.9797 0.2248 0.3055 , B 0.3669 0.7510
0.2074 0.6609 0.6527 0.4585 0.2312 0.2272 0.3142
0.6020 0.9731 0.5431 0.5976 0.9319 J 0.4842 0.3740

0.5190 0.3851 0.6518 0.1310 0.2305 0.7631 0.4555 1
C = 0.5971 0.4729 0.5466 0.5970 0.5064 ,F = 0.0501 0.5027I

0.3805 0.3592 0.8039 0.2023 0.1848 J[0.6824 0.2716 .
0.6911 0.8366[ 0.1958 0.5790 0.8710 0.9427 0.07 1 0.9911 0.9238

D = 0.9716 0.8839 0.7459 0.6631 0.7721 I E = 0.1412 0.9555
0.7691 0.2172
0.4180 0.6685
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with the initial gain matrix (partitioned as in (2.91))

0.9074 0.4859 0.5117 0.5784 0.7800rK, K 2 ] 0.6664 0.2697 0.7345 0.0293 0.6229

K 3 K41 0.4865 0.5581 0.0614 0.8401 0.2379

0.3389 0.4706 0.3855 0.3024 0.9400

In simulations it was seen that using equation (2.108) directly to produce the update of

K causes the step size between updates to be large regardless of the size of the matrix R.

A modification of this algorithm to control the step size was seen to be useful. This may be

readily accomplished since the updates of the gain need not be stabilizing. An update law

for the gain K was chosen to be

Kj+ =Ni + (1 - )K, aE[0, 1]

where Nj is the solution of equation (2.108) in the jth iteration.

Various choices of the gain a, and the matrix R were analyzed. The variation of the four

norms, the Hr. norm, the FH norm, the Hankel norm, and the trace norm -t each iteration,

where the values R = 51 and a = 0.6 were used, is shown in Figure 2.9. The value of K at

iteration 40 was

-15.8530 2.5021 17.2028 -3.1335 -3.9396

K40 11.2437 -3.1656 -13.5988 3.1284 3.5185
2.0500 0.0137 -2.5740 1.1343 0.8562

-2.5727 -0.0660 3.3596 -1.6122 -0.8960

In this example, we can see that beyond 20 iterations the various norms decrease exponen-

tially. In Figure 2.10 we see that the algorithm keeps finding gains that reduce the FH norm,

even though the convergence of the gain K is not smooth. The use of a step-size control is

seen to be useful in this case. The FH norm and the H,, norm, in this example, are seen

to be close not only at the optimum but also at each iteration. We can also see that in this

example, the solution is stabilizing, and also produces a stable controller.

In this example, the interval 1 = [6.00, 25.25], bounds the H"O norm which was 9.44 at

the point in which the first stabilizing gain was determined. After 30 iterations, the interval

bounding the H,, norm was reduced to [.0105, .0399], and its actual value was .014. Thus,
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Figure 2.9: Log of various norms at each iteration.

a significant reduction was made in the Ho norm and also the bounding interval 1. The

fact that the interval can be monitored implies that its size and location may be enough

to identify the size of the Ho, norm. Thus, the desired accuracy of the Hoo norm may be

obtained without actual computation.

Also considered was the effect of varying the order of the controller. Figure 2.11 shows

the FH norm trajectories in the computation process. As expected, the size of the controller

affects the reduction of the Ho norm. Each of the initial controllers chosen were unstable

and resulted in unstable closed-loop systems. After fifty iterations, with the controller of

order s = 1, the interval 1- was [0.0998, 0.5694], and the FH norm was 0.1448, the Ho" norm

being 0.1254. For the controller of second order, ." was reduced to [.000171, .000583], and

the FH norm was .000182, while the Hoo norm was .000228. Finally, for the third order

controller, I was [1.80e-6, 1.10e-5], and the FH and Ho, norms were computed to be 4.38e-6

and 2.00e-6 respectively. It appears that the first-order controller converged with an FH
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norm of approximately .1448, while the algorithm produced controllers of order 2 and 3 with

significantly smaller FH norm.

2.7.2 Application to other design problems

The disturbance-rejection paradigm can be used to treat other control problems in a

common framework. Prominent examples are the tracking of exogenous inputs, and model

reference design [28]. These are together with the disturbance-rejection problem depicted

in Figures 2.12. As before, u is the control vector, C is the controlled output vector, w is

the disturbance vector, and y is he measured output vector, while r is a reference signal.

In the tracking problem, we also have the exogeneous input tb. The goal of the disturbance

rejection problem is to suppress the response in the output C due to the disturbances w. The

objective of the tracking problem is to minimize the "throughput" from the input vector

v = [tbT WT]T to the output e. Similarly the goal of the model reference problem is to find
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a controller that reduces the effect of the "disturbance" input vector v = [rT WT]T to the

output vector e.

Developing a common design methodology, we first find a common way of representing the

closed-loop system in the tracking and model reference design in a linear-in-the-parameters

fashion, considering again the linear, time-invariant, discrete-time, stochastic state-space

plant (2.88).

We consider additionally in the tracking problem the tracking model

pk+i = Alpk + Blitk (2.112)
rk = Cl1k

and the controller

G+ I= Kjk+ [K(2 K3 [ ]k Uk =K 4 fk +[Ks K 6 ][Yk ],(2.113)
and so for x,.k = [k4 4 T]T, vk = [kT wT]T, and ek = rk - Ck we have

Xe,k+l = Ac,dXe,k + Ec,dVk, ek = DdXe,k (2.114)
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where Ac,t = At + tKtt,E = E -,t + tft t, Dt = [C1 - D 01,

At 0A 0 B 0 0C 000 0 0 0 ] 0 0 1,

,= E 0 F , K r K6 K5 K 4

0o 0 0 0 [o3 K 2 , I

For the model reference problem, we adjoin to (2.90) the model

pk+l = Altk + Blr (2.115)
tbk = CI/Ak

and the controller

k+1 = K1~k +[1K2 1 [k U ] = K4k + [1(5 K(6] [ k (2.116)
and so for Zek = [/4 4 T']T, and Vk = [rT w ]T, we have

Ze,k+1 = Ae,dXe,k + Ec,dvk, ek = DdXz,k (2.117)
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where A,,, = A,. + BKC, Ec,m D = [CI - D 0],

A, 0 0 0 0 0 0 0

Am 0 A 0, = B 0 m= 0 C 0
0 0 0 10 1. 0 0 1,

EB = [0 E] ',= 0 F] , km [ K6 K5 K40 E 0 F K3 K2 K,

All the parameters K1 ,..., K of the various dynamic compensators are free design param-

eters.

For each of these problems,

G(z) A D,(zI - A,)-'E, (2.118)

represents the closed-loop transfer function from the "disturbance" input to the output,

e(z) = G,(z)v(z). We thus have a common representation for each of the three problems,

which reduce to a disturbance rejection problem.

2.7.3 Examples

Using the same fifth-order plant and second order controllers. There are three observations,

two control inputs, two disturbances, and two outputs. The system was open-loop unstable

and the initial gains, for both the model reference and the tracking problems, were chosen
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at random and were not stabilizing. The data defining the examples are

0.7090 0.2174 0.2156 0.2471 0.2714 0.4218 0.6696
0.9167 0.6322 0.4611 0.1519 0.1583 0.9280 0.7232

A = 0.4492 0.0208 0.9797 0.2248 0.3055 , B= 0.3669 0.7510
0.2074 0.6609 0.6527 0.4585 0.2312 0.2272 0.3142
0.6020 0.0931 0.5431 0.5976 0.9319 0.4842 0.3740
0.5190 0.3851 0.6518 0.1310 0.2305

C = 0.5971 0.4729 0.5466 0.5970 0.5064
0.3805 0.3592 0.8039 0.2023 0.1848
0.1958 0.5790 0.8710 0.9427 0.0715
0.9716 0.8839 0.7459 0.6631 0.7721
0.6911 0.8366
0.9911 0.9238 r 0.7631 0.4555 1

E = 0.1412 0.9555 , F = 0.0501 0.5027
0.7691 0.2172 0.6824 0.2716
0.4180 0.6685 J

For the tracking problem, we considered the model

[0.0119 0.7220 0.9915 1r0-62421 .65.30
A = -0.4124 0.4140 0.2435 ,B 0.1253 C1 - 0.3515 0.9839

-0.1547 0.2075 0.4138 0.1564 0.7593 0.2910

and used the initial feedback gain

-1.8687 -0.3008 -1.5063 1.8896 -0.7378 1.9863 -0.5630
1.1583 -1.9086 -0.3427 -1.2689 -1.8124 1.0980 -0.2509

go =
-0.6677 -0.5334 -0.7351 -0.8977 1.3538 -1.6057 0.5989
-0.1027 -0.0875 0.7479 0.2787 -1.6202 0.9261 -0.2072

For the model reference problem, we considered the model

[0.0313 0.22460.190r 0.6242 0.5635 1 [-05186 0.41811
A, 0.0834 -0.0586 0.2339 ,B1 - 0.1253 0.9838 ,C1 - 0.4124 0.2971

0.7635 0.0384 -0.4704 0.1564 0.6350 -0.0119 0.1547

and used the initial feedback gain matrix

-0.5773 -0.0756 0.3200 0.1270 -0.3971 -0.1547 0.9915
0.7430 -0.7640 0.2484 0.9679 -0.4181 -0.7220 0.2435

go =
0.6301 0.0165 -0.7493 0.2700 0.4124 0.4140 0.4138
0.7410 -0.7173 -0.6873 0.5186 -0.4124 0.2075 -0.9343
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Both initial gains were chosen at random. The variation of the 'our norms: the Hankel norm,

the Ho norm, the FH norm, and the trace norm for the disturbance rejection problem was

shown in Figure 2.9. Figure 2.13, and Figure 2.14, show analogous, results for the tracking

1000.
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Figure 2.13: Log of various norms for the distribution of rejection problem.

and model reference problems, respectively. The value of K at iteration 40 for the disturbance

rejection problem was given earlier. For the tracking problem at iteration 35 the gain was

-7.8413 5.3768 -12.1889 1.4176 13.1417 0.3271 0.9358
8.1238 -5.5467 7.7612 -2.1177 -9.7492 -0.1666 -0.9349
1.2912 -0.9435 4.3515 0.9927 -6.2684 0.6571 -0.9840
1.2044 -1.0983 0.9982 0.9183 -2.1879 0.5003 -0.2711

and the value of K at iteration 40 for the model reference problem was[ 2.4721 -1.7562 -15.1818 2.1323 16.6832 -0.1850 -1.8802
K- -2.0549 1.6154 10.4600 -2.7596 -12.9371 0.3262 1.8608

40- -1.8793 0.8583 8.8285 0.1290 -11.7637 1.1118 1.4165

1.3085 -0.0726 -4.4312 0.1457 5.9159 -0.6352 -0.5588

In this example, we can see that beyond 20 iterations, the various norms decrease exponen-

tially. Figure 2.15 shows the convergence of the algorithm in each of the three problems as
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Figure 2.14: Log of various norms at each iteration for the model reference problem.

represented by the change in Ki. The FH norm and the H,, norm, in this example, are seen

to be close not only at the optimum but also at each iteration. We can also see that in the

example, the solutions are stabilizing, and also produce stable controllers.

Recall that in the disturbance-rejection example, (see Table 2.1) that the interval I =

Table 2.1: Variations in AK, for the three example problems.
Problem "-initial Hoo-initial I-final Optimized H,,
Dis. Rej. [6.00, 25.25] 9.44 [0.011, 0.0401 0.014
Tracking (53.85, 154.07I 68.64 ([0.90, 2.23 0.94
Mod. Ref [3.74, 12.28 6.87 [0.012, 1.13 0.014

(6.00, 25.251, bounds the H norm which was 9.44 at the point in which the first stabilizing

gain was determined. After 30 iterations, the interval bounding the H, norm was reduce

to (.0105, .0399], and the actual values was .014. Corresponding results for the two other

problems are summarized in Table 2.1. Thus, a significant reduction was made in the H~,
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Figure 2.15: Log of various norms at each iteration for the tracking problem.

norm and also the bounding interval 1, in each of these examples.

The FH-norm approach to disturbance rejection provides computational ease and a near-

optimal solution to the Hoo-norm minimization for controllers of bounded order. The ability

to consider a broad class of problems makes this approach all the more attractive for control

design. These features are amply illustrated on the fifth order example. The new Riccati

equation based algorithm is computationally attractive since it takes advantage of devel-

oped computational tools for the Riccati equation and eliminates the search for an initial

stabilizing solution.
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3 LOW-ORDER CONTROLLER DESIGN USING
PROJECTIVE CONTROLS

3.1 Time-Domain Properties of Projective Control

The projective controls approach offers a method of designing a low-order output feedback

controller to retain a subset of eigenvalues and associated eigenvectors of a reference state-

feedback system. The reference system is typically obtained using an LQ approach or an

H,-norm approach. The obtained controller can be either static or dynamic, the order being

determined in the design process so as to meet stated design objectives. Dynamic projective

controllers are parameterized by a p x r matrix of free parameters, r being the dimension of

the measured output vector, p being the order of the controller. When transient performance

is the issue, an LQ approach is typically used to determine the reference system, and the

retained eigenstructure is chosen to retain the dominant dynamics of the reference system.

The design freedom available in the free parameters is then used to shape the residual

dynamics. When disturbance rejection is the issue, an Hoo-norm approach is employed and

the design freedom in the available free Farameters is used to further improve disturbance

rejection.

In this section time-domain properties of projective controls are reviewed emphasizing in

particular a convenient parameterization of projective controllers. The remaining sections

expand the projective controls methodology and provide design tools to achieve transient

performance and disturbance rejection using low-order controllers. Section 3.2 concentrates

on the problem of shaping the residual dynamics, Section 3.3 presents the frequency-domain

properties of projective controls and their impact on the disturbance-rejection problem,

Section 3.4 develops the FH norm approach to solve the disturbance-rejection problem us-

ing projective controllers, and Section 3.5 introduces a convenient similarity transformation

which reduces the system representation to a linear in the free parameter form and extends

the design to decentralized systems.

The projective controls method [29], [30] is a method for designing low-order controllers
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for higher-order systems based on retaining a subset of the poles and the associated eigen-

structure of a reference system. The reference system is determined by a state-feedback

controller which is chosen for its desirable properties. Many algorithms exist for designing

state-feedback controllers; thus projective controls approach is suitable for use in combina-

tion with many types of synthesis methods. Moreover, once the state-feedback controller is

determined, the projective controller is easily computed. In particular, this reference system

can be written in the form

G,(s) = G, 1(s)G,2(3), (3.1)

while the closed-loop projective controls system has been shown to reduce to

Gp(s) = GI(s)Gp2(S). (3.2)

The G,(s) is called the retained subsystem while Gp2(3) is called the residual subsystem.

The order of the retained subsystem is determined by the class of controller chosen. Three

classes of controllers are considered here: static, proper and strictly proper controllers. For

a static projective controller the residual dynamics are completely determined and stability

and performance of the non-retained dynamics is not guaranteed. In the case of dynamic

controllers, the projective controllers are parameterized by free parameters. These may be

used to achieve stability and improve the performance of the residual subsystem. In the

remainder of this section, we state the basic properties of projective controllers and develop

controller parameterizations.

3.1.1 Static controllers

Suppose a state-feedback controller u = Kox is applied to the system (2.1) and yields the

reference system

G,.(s) = (H + EKo)(sI - F)-'G, (3.3)

where F = A + BKo. The eigenstructure of the reference system is FX = XA where A

is a diagonal matrix of the eigenvalues of F, A(F) and X is a matrix of the associated
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eigenvectors. The reference system can be determined using any of the appropriate state-

feedback design methodologies. One common design approach is LQ optimization. It has the

desirable properties of producing controllers which are guaranteed to be stabilizing through

the solution of the algebraic Riccati equation. In particular, the stabilizing controller which

minimizes UIG(s)11 2 is given by

u = K 2x, K 2 = -BTM 2 , (3.4)

where M 2 > 0 is the solution of the algebraic Riccati equation

ATM 2 + M 2 A - M 2BBTM 2 + HT H = 0. (3.5)

For details, see for example [31].

A stablizing controller which guarantees IIG(s)OO < -y is given by

u- KO, K = -BTMOO (3.6)

providing there exists M > 0 which satisfies the algebraic Riccati equation

AT MW + MOOA - MOOBBT MO + 1MOGGTM". + HT H = 0. (3.7)
72

For details, see for example [1].

Consider now a static controller which retain the r reference eigenvalues A, and associated

eigenvectors X,., where r is the number of measured outputs.

Theorem 3.1. If A,. is observable from C, then the static output-feedback controller C(s)

retains [A,., X,] if and only if

C(s) = D, (3.8)

where

DC = KoNo, (3.9)

N. A X,(CX,)-'. (3.10)

Proof Let the feedback Dc retains [A,., X,.]. We thus must have

AcX, = (A + BDcC)X, = X,.A,.. (3.11)
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Also

FX,. = (A + BKo)X, = X,.A7 . (3.12)

Subtracting the two equations yields

BDCCX, = BKoX,. (3.13)

Since A, is observable from C, CXr is invertible and (3.13) is satisfied by D, given by (3.9),

(3.10). Conversely, let D, be given by (3.9), (3.10). Then

A.X,. = AX, + BKoX,. = FX,. = X,.Ar. (3.14)

0

Theorem 3.2. Given the control law (3.8)-(3.10), the eigenvalues of the closed-loop system

are

A, = A, u A(A,), (3.15)

where

A, A yT(I - NoC)AY (3.16)

and Y satisfies CY = 0 and yTy =

Proof Let T be given by

T = [X-],T yT(I, - NC)" (3.17)

Note that U and V exist provided that CX, is invertible which is guaranteed by the observ-

ability of A,. Thus T is invertible since U and V exist.

T-'ACT=[ A 'O A, ] (3.18)

with

A, = yT(I, - NoC)AY (3.19)
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3.1.2 Proper Controllers

The following result identifies the class of pthorder controllers that retain r +p eigenvalues

and the associated eigenvectors of the reference system.

Theorem 3.3. The set of plh-order proper controllers which retain [A,, X,] and [Ap, Xp] is

given by

C(s) = C,(sI - AC)-' B + D, (3.20)

with {A., B., Co, Dj} parameterized by Po E JRPx, as

AC = Ap +PoCFBo
BC = PoCF(N - BoP) - ApPo (3.21)
Cc = KoBo
Do = K.(No-BoPo)

and B. A (I, - NoC)X,.

Proof From

Ac-, = fXA,- (3.22)

follows [ A+BDcC BCc] Xp X~]r AC X. A, 0]
BcC A ] W = W, W. 0 A]

or
AWp + B.CXp = Wphp
AW, + BoCX, = WA,(
BCcWp + (A + BDcC)Xp = XpAp = (A + BK)Xp (3.23)
BC,0 W, + (A + BDC)X, = XA, = (A + BKo)X,

or
Ac BcWpAp IA,]

Cc Dc CXp CX, = KoXp KoX, ;

thus, [Ac 1c _ W1pAp W.A,. 1 p Wr(.4
Cc Dc = KoX, KoX, CX CX,3

Define L A W;- W,; then (3.24) becomes

SAc Bc WpAp WpLA. Wp WL
Cc Di- KoX, KoX, CX, CX,
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or

[ Be :] = [ W ]K1L I A )~r [pjL ..1 0 (3.25)C, D, 0 1. KoXp KoX, CX, CX, 0 1,

Note that WVi represents a state-space transformation of the controller and thus Wp is arbi-

trary. It follows that

CX,, CX] -A-CXP A- 1

with

A A CX, - CXL.

Defining P. A L(CX, - CXpL)- 1 , produces

A-, = (CXI)-(I + CX,Po)

and [/, CX =[o,,P ],
CxP Cxr = -(Cxr)- 1Cx,(, + PoCX,) (CX)-,(Jr + CXPo)

Now setting Wp - (Ip + PoCXp), the identity in (3.24) becomes

A.: B 1 .. (Ip + P0 CXp)Ap P.CX7.A, I1,p
Cc D, [ KoX, KoXr -(CX,.)-CX, (CX,)-(I, + CXP)

or

Ac B [Ap + POCF(Xp - NoCXp) PoCF(NoCXp - Xp)P + PoCFN - ApPo
Cc D, = Ko(Xp- NoCXp) Ko(NoCXp - Xp)P + KoNo

which finally results in

* [Ac B, i Ap + POCFB, POCF(NO - B.PO) - ApP.
Cc DJ= KoBo Ko(N 0 - BoPo)

Theorem 3.4. Given the control law (3.20)-(3.21), the eigenvalues of the closed-loop system

are
A= UA, U A(AT) (3.26)
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where

A, A A, + BPoAY. (3.27)

Proof. Consider

AcI [A+BDC BC]

and define
xI + PoCXp PoCX, 0

which gives

= (cx.)-,cu. + XP oC) -(CX,.)-cx,
YT + yT(BoP ° - No)C -YTB

It can now be verified that AP 0 *

P-' = 0 A,I*
0 0 Ar

with

A, = yT(I. + (BOP° - No)C)AY = A, + yTBoPAY.

3.1.3 Strictly proper controllers

Consider finally the pth-order strictly proper controller which retain the p reference eigen-

values A, and associated eigenvectors X,.

Theorem 3.5. The set of pth-order strictly proper controllers which retain [Ay, XP] is given

by

C(s) = Cc(sI - A,)-'B, (3.28)

and parameterized by Po E IxP where

AC = A, - PoCX
Bc = Po (3.29)
Cc = K.XP.
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Proof. From
A BCJx P [XP]A (3.30)
BXC A. W[x W

we have

A.W, + BCCXp =Wp^

or

Ao = WpApW;'- BoCX W- 1  (3.31)
= W,(A, - W;'BcCX,,)W; .

Defining P. A W;,BC, relation (3.31) reduces to

AC = Wp(Ap - PoCXp)W;l (3.32)

with

B.- WPPo. (3.33)

From (3.30) also follows

BCW + AXp = XpAp

or

BCW,, + AX (A + BKo)X,,,

which is satisfied by

CW, =gox

or

C, = KoXpW;'. (3.34)

Note that Wp represents a state-space transformation of the controller and thus Wp is arbi-

trary. Choosing Wp = Ip, reduces (3.32)-(3.34) to (3.29).

Theorem 3.6. Given the control law (3.28)-(3.29), the eigen values of the closed-loop system

are

AC = Ap U A(A,.) (3.35)

where

A _ A - X,PoC. (3.36)
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Proof Consider

and introduce the transformation

XP I.] ' = 0 -x,

Then

and so

A, = A - XPoC.

0

3.1.4 Example

Consider the system defined by

A = -1 1' B= [1 C=[1 0 01,
1 -2 -1 -11•

Q = diag{100,0,100,0}, R=1,

with

Spec {A} = {-1.53 = j2.18,0.53 - jO.92}

and

Spec {F} = {-3.57 ± j4.09,-1.30,-0.56}.

It can easily be determined in this problem that static projective controls will not stabilize

the system. Thus, a first-order dynamic controller is sought. Since r = 1, p = 1, there is only

one free design parameter. It effect on the residual dynamics can be observed by considering

the root locus for the residual system (note that here C = [I, 0], So yT = [0 1])

i. = (A,. + BopA12)X
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where [-24.46 46.93 -22.46 1 B [ -9.101
Ar = 0.78 0.44 0.78 , Bo= 0.07

21.59 -48.18 22.59 8.94
A 12 = [1 -2 1].

Omitting the details, it is determined in this particular problem that the stabilizing values

of p are in the interval [-2.575, -2.595]. The controller parameters are

H = -1.3 - 0.31p, D = 0.85p + 0.31p 2

Nd = 13.49, Kd = -35.84 - 13.49p.

Taking

p = -2.5875

the controller becomes
H = -0.50, D = 0.17
Nd = 13.49, Kd = 0.49

and the spectrum of the closed loop system becomes

Spec {Ac,} = {-0.56, -1.30, -0.20, -0.22 - j1.44}.

Here, the first two eigenvalues have been retained from the reference dynamics, and the last

three placed by solving the auxiliary pole-placement problem.

3.2 Shaping the Residual Dynamics

Consider presently that C = [1, 0] as in the previous example, and note that the residual

dynamics (3.32) can be associated with an auxiliary static output-feedback control problem

for a system of (n - r)th-order with p input and q outputs, where q = rank A12. It is well

known [32] that such an output pole-placement problem has a solution for almost all A7, B0

and A12 , and almost all desired spectra Ad if n - r < p + q, i.e., if

p > n - r - q.

This implies, in particular, that when A12 is maximum rank, q = r, the pole placement

problem can be solved for almost all problems using an (n - 2r)Ih-order controller; this is

of lower order than the Luenberger (minimum order) observer. We present a solution to the
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pole-placement problem in a novel way that utilizes the full available freedom, as opposed

to earlier procedures where P is frequently (for ease of calculation) restricted to be of unity

rank [33].

Let

TI = [U U2] (3.37)

where U1 E R(O- r)1, U2 E R(n- r)x(n -2r) satisfy

A =U1 I (3.38a)

A12 U2 - 0. (3.38b)

Then

A, = Tf" Ar.T = Ti"'ArT + T;" BoP[I 0]. (3.39)

Define

T'A 7 .T1  D11 D12 1 T;-Bo=[EI (3.40)I D21 D22  ' E2

with D11 E R "?X, D21 E R "-s r, E E RixP. Then

A, =F D1 + E1 P D1 2 1A D21 + E 2P D 22 ] (3.41)

Now introduce the second transformation

T2= L I ' = [ 0 ]LE R (3.42)

It can then be shown that

A 2 = TjAIT2 = T 1T'AeTjT2 = T-1 AreT

[Di + D12L + ElP D1 2  1 (3.43)

= -R(L) + (E2 - LEI) D 2 2 - LD12

where

R(L) = LDI - D2 2 L + LD12 L - D2 1 . (3.44)
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Now suppose n - 2r > p; this implies that a solution to the pole-placement problem almost

always exists. It also allows a non-unity rank solution to the pole-placement problem to be

determined. To this end, decompose E2 - LE 1 as

E2 - LE 1 = [MI M2] (3.45)

where M1 E R(n- 2r)x(nX - 2r) and det M1 9 0. Decompose P and El as

P = [P P2], E = [E' E] (3.46)

with P1 E R( ' - 2?)xt, P E R(P- +2r)xt, El E RTx(n -2r), and Eb E p 'x(P -n+r) .

Theorem 3.7. Let L place the pole of D22 - LD12 at A1 and let P2 place the poles of

A,, - BI 1P at A2 where

A4, = D11 + D12L + E*MT'R(L) (3.47)

B., = E*Mj'lM2 - El. (3.48)

Then if

P1 = Mj-'(R(L) - M2P2) (3.49)

we have

A(A,) = A, U A2 . (3.50)

Proof From 3.43, using (3.45) and (3.46) follows

A2 D11 + D12L + EjfPj + EbP2 D12 (351
A2 -R(L) + MIP + MP2 D12 - LD12 (3.51)

Choosing P1 to satisfy (3.49) for given L and P2 produces

A2 [D 11 + D 12L + EMT'R(L) - (E Mf'1 M2 - Et)P2  1

0 D 1 2 - LD 12 J
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3.2.1 Example

To illustrate the above pole-placement procedure consider problem of placing the poles of[0 1 01 roo0
ic = 0 _ 

X + 0 11_+ 1 0
-4 -3 -2 L101

Y = [1 o 1 ..1 - 0 1 0 z

at Ad - {-3, -4, -5}. For this problem

D11 = 0 ], D 1 2 =[ G 1 =[0]'

D21 = [-4 -3], D22 =-2, G2 = [0],

11B1 o [1 '] B 2=[1oJ.

Follows
D22 - LD12 = -2 - [11 t21 -2O ]12

Suppose the eigenvalue of D22 - LD 12 is selected to be -4 E Ad. In view of above choose

12 = 2

and without loss of generality, let 41 = 0. For this L we get

R(L) = LD 11 - D22 L + LD 12L- D12

= [11 2][ 0 1 2[1, 21+ (t,2 [ ] [12]-[-4 -3]

which produces

R(L) = [4 3].

We now want to satisfy

R(L) = (B2 - LBI)P;

so,

[4 31 = [1o -[o 21 0 0 PI A

= [P, P2] - 2[P 3 P4],
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and hence,

(P P2] = [4 3] + 2[P3 P4].

Since here T = I, then E = Tf'1B = B, and so E, = B1, E 2 = B 2. Thus we solve the pole

placement problem

A(D11 + D12L + B1K) = Ad2 {-3, -5}.

Since [0]+01 0L+00]=
Dn+ I2 +B1 = 0 0 + 0 0 1 P3 P4

[0 1 ] [o0 o 0 1
= 0 2 +  P3 P4 J P3 P4

this demands that
P3 = -15
P4 = -8.

Which in turn results in
P = -26
P2 = -8.

And so the gain matrices [26 17 ] L-= [O 21
P -15 8.'

place the poles of A,, at {-3,-4, -5}.

3.3 Frequency Properties of Projective Controllers

In the previous sections, attention was focussed on improving the closed-loop performance

by retaining properties of a state-feedback controlled system with a low-order projective

controller; thus, time-domain properties of projective controls were exploited. Disturbance-

rejection properties are typically judged according to frequency-domain measures such as the

,J. norm. Expressions have therefore been developed which relate the frequency-domain

properties of a system with a projective controller to the frequency-domain properties of a

system with a state-feedback controller.

In treating frequency domain properties via transfer functions it is often useful to use

the compact notation of the transfer function while retaining the state-space representation
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for computational purposes. We do so here and introduce the following notation for this

purpose:

Definition 3.1. Given the state-space representation of the LTI system

i(t) = Ax(t) + Bw(t)
z(t) = Cx(t) + Dw(t) (3.52)

where z E Rn is the state, w E ir' is the input, z E Ir is the output, the transfer function

of the system shall be denoted by the packed representation

[A B ] C(sI-A)-B+D. (3.53)

Thus, through the use of the expression (3.53), the transfer function of the system is

represented in terms of a state-space representation using a compact notation.

Let
Gi(s) r A, I B, G]  3 A [A21B2 ]  (3.54)

L C1 D, 2() C2 ID2 I"

If the two systems GI(s) and G2(j) are cascaded together as in Figure 3.1, the resulting

Figure 3.1: Cascade connection.

system can be represented as

A 2 B 2 C 1 B2DI 1
G2(s)G(s) - 0 A1  B1  (3.55)

C2 D2C1 D2D,

If the two systems are connected in parallel as in Figure 3.2, the resulting system can be

represented as
A, 0 B 1

GI(s) + G 2(s)= 0 A2  B 2  (3.56)
C1 C2 DI +D 2
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-- G2(3)

Figure 3.2: Parallel connection.

C(s)

Figure 3.3: Feedback connection.

Note that representations (3.55) and (3.56) are not necessarily minimal. Consider finally the

feedback configuration of Figure 3.3. Let the plant have the state-space representation

i = Ax+Bu+Gw
z = Hz+Eu (3.57)

y = Cx+Dw

where x E 1R?" is the state, w E JR" is the disturbance input, u E -W is the controlled input,

z E JR is the controlled output, y E Brn is the measured output. The transfer function P(s)

is characterized by /(s) 1 [ ws)1
y(s) ] = P(s) u(s) (3.58)

Then

P(s) A H 0 E (3.59)

If the system is controlled by

C(s) [ A. I B. 1  (3.60)

so that

u(s) = C(s)y(s), (3.61)
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then the closed loop feedback system represented on Figure 3.2 is given by

A + BDC BC, G + BDD

G() = BC A, BD . (3.62)
H + EDC EC, EDD J

We can now state the following results for transfer function properties of projective

controllers.

Theorem 3.8. Define the error between the static projective system and the reference

system as

E(s) A G,.(s) - GP(s). (3.63)

Then

E(s) = H+EKE KoY 0 6 (s) 1-E2(3) (3.64)

where G, A yT(ij - NoC)G.

Proof Recall here that A, is given by (3.36). By definition, E(s) is given by

E(a) 0 AC G (3.65)
H + EKo H + EDC 0

Applying the state space transformationai [ n-X nI
T= 0 X, Y ' . 0 V 3.6

0y 1

produces
F 0 -BKoY 0
0 A,. UAY -UG(
0 0 4 -VG (3.67)

H +EK, 0 -E&oY 0

Removing the unobservable states yields

E(s) = 0 A, -VG H+EK E (3.68)
H + E& -EoY 01 LK

0
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Theorem 3.9. Define the error between the proper projective system and the reference

systems as E(s) - G,(s) - Gp(s). Then

E(S) = [H + EKo ] A7 G+Y TB0 PCG = E1 (s) E2(3; Po). (3.69)

Proof Recall that A, is given in (3.27). By definition now

F 0 0 -G"
0 A + BDC BC, G (3.70)

= 0 BC A, 0"
H + EK H + EDC EC, J

Applying the state space transformation

[ Inl -xp - Y]
To 0 XP X, Y (3.71)

0 I. + PoCXP PoCX, 0o

In I. 0
= -PO II (3.72)

0 (CX,)-'C(I, + X.PoC) -(CX,)- 1 CXp
0 yT + yT(BP ° - No)C -YTBo

yields
F 0 0 -BKoY 0
0 AP 0 **

E(s) 0 0 A,* (3.73)
0 0 0 A, G, + yTBoPoCG

H + EKo 0  0 -EKY 0

Removing the unobservable states yields

F -BKoY 0

E(s) = A,. G, + yTBoPoG (3.74)

H + EKo -EKoY 0

which is equivalent to

E(S)= F I i r+K A, [2 .G,+ yTB.POCG] (3.75)

Theorem 3.10. Define the error between the strictly proper projective system and the

reference system as E(s) A G,(s) - G,(s). Then

F l l
E(s) = [H + EKo r A. IG G " (3.76)
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Proof By definition, E(s) is now given by

F 0 0o -G

0 A BC, G (3.77)= 0 BC A, 0"
H + EKo H EC, 0

Applying the state space transformation

rI. -xP -i, r. 1. 1. 0
T. [ 0 XP I , T'= 0 0 I (3.78)

0 IP 0 0 , -XP

yields
F 0 -BK -00
0 A, PoC 0 (3.79)
0 0 A, G

H + EK 0 -EKo 0

Removing the unobservable states yields

E(S) 0 A G F B A,
E H + EKo -EKo 0 [H I. O

3.4 FH-Norm Optimization of Projective Systems

Previous development has shown that, when dynamic projective controls are used, the

error transfer function in all cases reduces to

E(s) = EI(s). E2(s),

where E(s) is independent of the free controller parameter while E2(s) depends on P0.

Because IIE(s)i < IIEi(s). 1E2(s)I and IIEi(s)I is constant, it is a natural idea is to choose

Po to reduce IE 2(s)II. This, however, is not necessary and one may attempt to reduce

liE(s)JI which represents a frequency weighted optimization problem with respect to Po. In

either case, an auxiliary minimization problem is solved to determine the free parameters

of the dynamic projective controllers in the disturbance-rejection problem. The auxiliary

minimization problem is to find Po to solve

A = arg min jlIT(s; P.)l1, (3.80)

PO
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where T(s; Po) is some appropriate transfer function which is dependent upon P., and

is an appropriate norm. The transfer functions that we will consider here are E2(s) given

in (3.64) or (3.69), and the norm will be the FH norm as the computationally feasible

alternative. The alternative approach where T(s) = E(s) is also of interest and has the

advantage that it takes into account the frequency weighting implied by E(s) in (3.64) or

(3.69). Finally, we may choose

T(s) = G(s) (3.81)

in which case the intent is not to reduce the error, but instead directly reduces IIG(s)1 subject

to constraint on controller structure. In this section we choose to select the free parameters

of the system P to satisfy

P = arg m n E2(s; Po)IIFH, (3.82)
Pa

while the alternative approach of reducing IIG(s)IIFH is considered in the next section.

For the case of strictly proper controllers E2(s) is given by

E 2 (S) =[ = C] [A, IB (3.83)
E Ls) Ko 10 J= C, 0 '

where A, is given by (3.36). The problem then is to minimize over P.

J(Po) = Tr P,.Q,. (3.84)

subject to the two Lyapunov equations

A,.P, + P,.AT + BB T = 0 (3.85)

A, Q, + QA,. + CTc, =0

which define the controllability and observability grammians of (3.83). The necessary con-

ditions for a minimum then consists of (3.85) and

A,L, + LAT + p. = 0
ArTM, + MA,. + Q,. = 0 (3.86)
XT (Q,L,. + M,.P,)CT = 0

where M. and L, are Lagrange multipliers for the constraints (3.85).
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The gradient of J with respect to P. can be computed for arbitrary Po as

d.= 2X(QL 7 + M P)CT (3.87)

where P,, Q,, L, and M, solve the Lyapunov equations (3.86).

Thus, a feasible directions algorithm can be implemented by iteratively solving

P(d+) = Pi - V (3.88)

for the optimal Po.

For proper controllers, we will assume for simplicity that C = [1 0], so Y [0]and
the expression for E2 (8) reduces to

E2(s) = K 2(sI - A,)-'(VG + BoPoG1) (3.89)

where A, is given by (3.27), K 2 = KoY, V is defined in (3.17), B0 = yTBo and G, = CG.

The necessary conditions then take the form

ATQ + Q,A,. + KTK 2  0
AP, + PA,4 + (VG + BoPoG1)(VG + BoPoG1 )T (3.90)A, Lr + L,A, + P, = o
ArM+ MLA, +Q2 =0

and
TJ=2r[Q,M, + L,.p,.A T + 2f TM,.(V G + f oPoG,)G T = O. (3.91)

O 2 f o 12 1

The structure of (3.91) allows the use of the steepest descent method, with Po adjusted

via (3.88), as well as the use of the Riccati equation based algorithm when (G1GT)- 1 exists.

The next iterate for Po is then given by

pl+ _= -(3o M )-, " ,, ,"[(Q'M, + LP,')AT + B MVGGT1(G GT)-'. (3.92)

3.5 Disturbance Rejection using the FH Norm and Projective

Controllers

3.5.1 Problem formulation

In some cases, it may be important to consider directly disturbance rejection with respect

to G(s), where G(s) is the closed-loop transfer function of the system using proper or strictly
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proper projective controllers. It is, however, observed from the parameterization of the

projective controllers that the closed-loop system is a non-linear (quadratic) function of

the free parameter matrix P. Thus to simplify the computational issues, and reduce in the

design phase the system representation to simplest form, we seek in this section a reduction to

LIFP (linear-in-the-free-parameters) representation of the closed loop system. We will do so

in the decentralized setting where a number of decentralized low-order projective controllers

is used to retain by joint action a selected invariant subspace. In the decentralized case,

however, even the residual dynamics exhibits a nonlinear dependence on the free design

parameters P1,..., Pq, where q is the number of decentralized control channels and Pi is the

free parameter matrix parameterizing the i-th controller. Thus, in the decentralized case,

it is even more significant to reduce the system to the LIFP representation. We therefore

develop the LIFP representation here for the decentralized control problem, which reduces

to the centralized problem when q = 1.

Consider the decentralized system of Figure 3.4. The state space description of this

system can be written as follows:

-A= + Biu2 + B2u2 + Gw

y, = C z
Y2 = C2 : (3.93)
y, = H .

where x E 1?, u1 , u2 E RM, yi, y2eW, y.,e', and weW. Let the dynamic controllers have

the structure
i = H4, + Diyi

ui = -Ndi& - Kdiyi, i = 1,2. (3.94)

where , E R P , i = 1,2, and define the extended system as

ie = A.z. + B1.ul + B2eU2 + GeW

Yle = Cieze ()
Y2e = C2eXe

Yce = HeXe
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Figure 3.4: Decentralized system.

where

AC = D, C, H11 0 ,B,. = 0 ,B2C

D 2C2  0 H2

Cie = C, 0 ] C [ 2 0 (3.96)

Ge = []He[H 0 0].

The goal is to determine {H 1, D1, Ndl, Kd, } and { H2 , D2, Nd2, Kd2 } to achieve certain per-

formance and disturbance rejection goals.

It has been shown [34] that if

u = -K 0 x (3.97)

is a stable feedback control producing the closed-loop system

YC = Hz +Gw (3.98)
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with F having the Jordan decomposition

F[-r+p Xcl =- [11+p Jr+I 0 A ], X,+, E EU(+) (3.99)

then there exist dynamic controllers of the form (3.94) such that the resulting closed-loop

system retains all eigenvalues in A,+p together with the associated invariant spaces. In fact,

the entire family of such controllers has been parameterized [34] as follows:

Hi = WIA 1  
, , i= Api + PF1 2 OI q, = 1,2

Di = Wi Di, D = PiPr-/iPi, i= 1,2
(3.100)

Kdi = K,- NdiPi, i=1,2

Ndi = NdiVl, Ndi = K2B, i=1,2.

Here Pi, i = 1,2 are free parameter matrices of dimension p x r, the presence of Wid implies

the invariance to similarity transformations, while AP, A, are partitions of the Jordan form

Ar+p and F12 , B1B, F,, K.i, Nd, and K2,i = 1,2 are known quantities determined directly

by the reference solution F and its eigenvectors, assuming for each i that the system has

transformed into the representation where Ci = [1, 0]. For details see [34].

If transient performance is of primary concern, then the reference state-feedback solution

can be determined by solving an LQ optimization problem, and projective controls will

then retain in the closed-loop system the dominant poles of the reference solution that

define acceptable transient response. The free parameters are then determined by solving

an auxiliary problem to shape the residual dyn,.mics.

If disturbance rejection and transient response are of concern, then the reference solution

can be determined to minimize the H,, norm. The Hoo-optimal state-feedback control is

given again by (3.6) where M > 0 is the solution of the ARE (3.7) with B = [B1 B2], and -Y

is the minimal value for which M > 0 solving (3.6) exists. The use of (3.6) guarantees here

IIGo(s)I[o = IIH(sI - F)-'Gloo :5 -f (3.101)

with both control channels using state-feedback controls. Projective controls will now fix

the dominant poles and associated eigenvectors of the system at locations determined by
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the reference solution, while the free parameters P,, P2 are to be used to shape the residual

dynamics to achieve disturbance rejection. To simplify the disturbance rejection problem

in applying the FH-norm minimization approach, the transformation developed in [34] that

reduces the closed-loop to a linear-in-the-free-parameters (LIFP) form will be applied.

3.5.2 Transformation to the LIFP form

Assuming, without loss of generality, that Wpi = I, Wp2 = I, the closed-loop system

becomes

ie = Acexe + Gew (3.102)

yc = Hexe, (3.103)

with r Ad -BNdI -B2Nod2
Ace = (PF, - H1 P)C 1 Apt + PF 2Bo 0 (3.104)

(P21f, - H 2P2)C 2  0 Ap2 + P2F2.J

where

Ad Ac + BINdlPI + B 2Nd2P2, A, = A - B1 Ko1 C - B 2K, 2 C2. (3.105)

Now apply the transformation i3 = Tie where

In, 0 01 1, 0 01
T PIC, I, 0 , !f-1= -PIC, I, 0 . (3.106)

P2C2 0 lp2 -P C2 0 Ip2

The system (3.103) becomes
X3 = A cex3 + OeW (3.107)

Yce = Heie,(
where

Ace = T-'AeT, Ge = T-'G, Re, = He'. (3.108)

The expression for Ace can thus be derived to be

Ac - BNdI B2 Nd2  1
Ace = PE A, + PIG,, PG 12

P2E 2  P 2G21  A,2 + P2G22  (3.109)

= A- + beP2e. + 1,2 P2C2e
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where

AC p 0 0  -BINdl -B 2Nd2 1 0 0
0 0 Ap 2 [IP2 (3.110)

.,e = [E Ci G12], C e = [E G21 G22]

with
El = FC - CIA., E 2 = FC 2 - C2A.

= F 2B + CBINd, G12 = CB 2 Nd2  (3.111)

G21 = C2 BINdl, G22 = F2
2BO2 + C2B 2Nd2

while [ 1I, 0 0 G
Ge = Ge= -P 1 -1 I 0

- AC2 0 p2 o

G (3.112)
- -P 1 C1GI

-P 2C2G

G G3 - Bi.PiCiG - B2,P2C2G

and

fre = He T = H. (3.113)

Thus, when the similarity transformation is applied to the system, the expression derived for

A,,, (,, and H all exhibit a linear dependence on the free parameter matrices P and P2.

(f/t is in fact independent of the free parameter matrices.) This linear dependence can now

be utilized to determine suitable P and P2 (and thus the dynamic controllers) to achieve

disturbance rejection by minimizing the FH norm.

3.5.3 FH-norm minimization

This minimization now reduces to the minimization of J. = Trace P.Q, subject to the

following constraints:
AQe+ QeA. + Tfte = 0
A .P, + PAT + T 0. (3.114)
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By defining the Lagrange multipliers, L. = LT, M, - M T , the problem can again be reduced

to an unconstrained minimization and since A,., 0,, and fie are all linear functions of the

free parameters; only minor changes are introduced in the usual necessary conditions. These

can now be written as follows:

aJ/aPe = AoMe+MeAc,+Qe=0

aJ/aQe = AeLe + LeA +Pe =0

OJ/OLe = ATQe + QeAce + 'lf-e = 0
(3.115)

0J/OM, = AcePe + PeA +e ,=0

J/OP1  = 2Bl(MePe + QeLe)( T - 2 B1MGG T CT

0J/OP2  = 2B(MePe + QL.)0T - 2"rMG.GTC .

The feasible direction algorithm can now be applied. Initially, the free parameter ma-

trices, P and P2 , are set to zero, (although arbitrary values can be used). If the resulting

closed-loop system matrix, Ac. given by (3.104) has unstable eigenvalues, J is not defined.

In this case, an embedding parameter, p, is chosen such that

p > Max,(ReAj(A)), (3.116)

and Ac modified to Ac - pI. If the resulting Ac. is stable, the embedding parameter is

then zero. This leads to a modified extension J, with an expanded region of definition

encompassing the initial P1, P2 .

In the feasible direction algorithm, the first four equations in (3.115) are solved for Me,

L,, Q, and P.. These are then used in the last two equations to calculate a gradifknt direction

for the next iterate of P, and P2, with

P1'4+'= Pi - sag/aP
P2+. = P2 -sOJ/P 2 , (3.117)

where s is the step size solving the one dimensional minimization problem

S = arg min Je.(P - h- P2 - h- ) (3.118)
h>o aP' OP2
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thus guaranteeing convergence to a local minimum. Using the embedding parameter method,

the maximal eigenvalue of Ac can be successively moved towards the imaginary axis. The

parameter a can then be decreased and ultimately when the system is stabilized 8 can be

set to zero resulting in the minimization of the original criterion Je. However, it may not

be possible to move all unstable eigenvalues into the left-half plane without simultaneously

forcing previously stable eigenvalues into the right-half plane. If this situation occurs, the

order of the dynamic controller must be increased to provide additional design freedom

needed to stablize the system. Expanding controllers if necessary is simple in view of the way

controllers are parameterized (see [34]) and expanded-free parameter matrices can utilize the

latest iterates of P and P2 to simply continue the combined stabilization and optimization

process. This resulting algorithm applicable to an arbitrary number of controllers can be

summarized as follows:

1) Initialize P1 =, i = 1,... ,k.

2) Evaluate the resulting closed-loop system matrix A,, based on the current iterative value

of Pi, i = 1,... ,Ik. If A ,. is stable, proceed to step 5.

3) Choose an embedding parameter, p, such that p > Maxi(ReAi(A)).

4) Solve the associated minimization problem recursively until p can be set equal to zero.

(If Ace cannot be stabilized, increase the order of the dynamic controllers to be used

and start the algorithm over.)

5) Solve for Pe, Qe, L, and M, from the necessary conditions for a minimum Trace PQe.

6) Use the partial derivative equations with respect to the free parameter matrices to

calculate gradient directions.

7) Set Pi + 1 = AP + Pi where AP = -sOJ/9P, i = 1,... ,k.

8) Repeat until Pi, i = 1,... , k converge to their optimal values.
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9) Use calculated Pi, i = 1,..., k, to determine controller parameters based on the param-

eterization given by (3.100) to complete the controller design.

It is noted that in view of (3.109)-(3.113) the last two necessary conditions in (3.115) are

linear in P1, P2. However, they represent coupled Sylvester equations, and so do not reduce

to a computationally attractive Riccati-based algorithm. In the centralized case however,

one can use the Riccati-based algorithm provided (CGGTCT) -1 exits.

3.5.4 Example

In order to illustrate the approach, consider a seventh-order system with two decentralized

dynamic controllers to be designed so as to minimize the effects of a disturbance input on the

regulated outputs. A system of the form (3.93) will be used, characterized by the following

matrices:

-2 1 0 0 -1 1 0 0 0
-2 -3 1 0 0 1 1 0 0
-2 -3 -2 0 -1 -1 -1 1 0

A = 0 0 1 -3 -1 0 0 B,= 0 B2 = 0
-1 0 1 0 -2 1 0 0 0

0 2-1-1-2 1 1 0 0
-1 0 -3 0 -2 -2 -4 0 1

[1000000

0 1 0 0 1 0 01C2 = [ - 1 0 01000]

0
00 [10 00 0 0 0G I H= o100000

1

0

Q = diag {100,10,100,0,0,0,0}, R 11 = R22= 1.
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The open-loop system is unstable, with the spectrum,

A(A) = {-2.80 ± j2.41, -4.48, -3.71, .83 - .68, -1.26}.

The reference system (here -.n LQ solution, i.e., -y --+ oo) is characterized by the optimal

spectrum,

A(F) = {-10.09,-1.62 ± jl.63,-1.15,-4.5,-3.10 ± j.87}.

Since in this problem r, = r2 = 2, two modes of the reference solution can be retained

with static projective controls. In addition, by using two first-order dynamic controllers, one

additional mode can be retained. The dominant modes are chosen for retention; thus,

A=[ 1.62 + j1.63 -1.620- j63 A = [-1.15].

The initial choices for P and P2 are

P1 =[0 01, P=[0 01

producing the closed-loop spectrum,

A(Ac) = {-3.65 ± j2.16, -3.89, .36, -1.62 ± jl.64, -. 92, -1.15, -1.15}.

Note that this choice of P and P2 fails to stabilize the resulting closed loop system. Con-

sequently, the embedding parameter method must be used initially until a stable Ace is

achieved, or it is determined that the order of the dynamic controllers must be increased.

For the example at hand, first-order controllers did produce a stable system; thus, the order

did not need to be increased.

The feasible direction algorithm is then employed to yield the optimum parameters for

P and P2 for disturbance minimization. These optimal values are found to be

PA = [-2.41 0.71)
P 2 = [-3.65 1.581

with an optimal value of the cost criterion of

J = Trace PeQ, = 1.430E 2 .
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(Notice that for the initial choice, J = oo, since the system was unstable.) The closed loop

spectrum, Ace, produced by the free parameter matrices is now

A(A,,) = {-5.77 ± 3.36j, -. 58 ± 1.72j, -4.26, -3.42, -1.62 ± 1.63j, -1.15}.

Once P and P2 are determined, the controller parameters can then be determined from

(3.100) to be
Hi = -1.93, H2 = -7.92
D1  = [-5.48 -4.58], D2 = [-25.17 17.05]
I(d = [-3.43 - 1.95], Kd2 = [-34.17 20.481
Ndj = -0.95 Nd2 = -8.87,

thus completing the design.

3.6 A design example

We finally present a realistic design example to illustrate the design procedures developed

in these two sections. The structure considered is a 45 foot lattice-type, light-weight (5 lbs.),

flexible beam with fixed base and free tip shown in Figure 3.5. The system is modeled by a

40th order state space model.

The control u E R2 consists of torques applied at the base of the structure about the x

and y axes. The disturbance w E JR 2 is generated by an x - y translation applied to the

base where the z-axis is taken to be the axis of the cruciform. Measurements of the system

y E V are obtained from an x - y axis gyro and accelerometer sensors located at the tip

and base of the structure. The controlled output z E R is the position measurement at the

tip and base of the structure. The model parameters can be found in Figure 3.6 to 3.8 [35].

This example has also been studied in [361 and [371.

The system considered in this example consists of the x-axis dynamics of the complete

system. The inputs and outputs were decentralized after a Generalized Hessenberg analysis

[37] of the system. The resulting systems are described in Table 3.1. For more details see

[35], [37].

The 12th order model of the x-axis dynamics was obtained by performing a balanced

reduction on the original system using only the x-axis inputs and outputs. The eigenvalues
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Table 3.1: Modes of the Cruciform Model.

Real Imaginary Frequency Damping
-4.2471e-03 ±8.494le-01 8.4942e-01 5.00OOe-03
-3.4723e-02 ±7.0339e+00 7.0340e+00 4.9365e-03
-3.0800e-02 ±7.7296e+00 7.7297e+00 3.9846e-03
-1.9863e-01 ±1.0458e+01 1.0460e+01 1.8989e-02
-5.1863e-01 ±2.5925e+Ol 2.5930e+01 2.000le-02
-8.2976e-01 ±4.6092e+01 4.6100e+01 1.7999e-02

of the resulting model are found in Table 3.1 and show typical flexible structure properties,

i.e., lightly damped and closely packed low frequency modes. The y-axis dynamics were

treated similarly but are not shown here.

Note that model reduction was used only to remove very weakly controllable and observ-

able modes. This is dotue to avoid neglecting modes which may be important in the design

of the controller since the projective controls method allows oll- to use a high order model

without requiring a high order controller.

The cruciform model is decentralized into x-axis and y-axis systems as shown in Table 3.2.

Table 3.2: GHR Decentralized Model Results.

Model Inputs Outputs
x-axis U1 ,W2  Z2, Zs, Y1 ,Y4 , Y8 , Y1I
y-axis u2,w 1  z1, z4 , Y2, Y5, Y7, Y10

3.6.1 Design of the controller.

A projective controller is now designed to achieve disturbance attenuation for the cruciform

sy3tem. From Figure 3.9 it can be seen that -he nominal system has disturbance attenuation

of -y = -20dB. In this example, the disturbance attenuation will be improved to f = -40dB

using a low-order, robust controller designed using the projective controls method.

A reference a state feedback controlled system was determined first. The eigenvalues of

the resulting closed loop system, A(F) are given in Table 3.3. The frequency response of the
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Table 3.3: Modes of the Reference System.

Real Imaginary Frequency Damping
a -1.0856e-01 ±8.5272e-01 8.5960e-01 1.2629e-01
b -3.4723e-02 ±7.0339e+00 7.0340e+00 4.9365e-03
c -3.0801e-02 ±7.7296e+00 7.7297e+00 3.9848e-03
d -1.9902e-01 ±1.0458e+01 1.0460e+01 1.9026e-02
e -5.1870e-01 ±2.5925e+01 2.5930e+01 2.0004e-02
f -8.2977e-01 ±4.6092e+01 4.6100e+01 1.7999e-02

closed-loop system in Figure 3.10 shows the disturbance attenuation to be 7 = -40dB. The

gain margins are (0, oo) and phase margins aie ±900. Thus, this state feedback forms an

acceptable reference system for the projective controls method.

Static projective controls excited the higher frequency models and so second order (p = 2)

dynamic projective controller was considered. In the design of the dynamic strictly proper

projective controller, there are two main design freedoms: the selection of the retained modes

[Ap, Xp] and the selection of the design parameter P. The retained modes [Ap, Xp] are chosen

to retain disturbance attenuation and robustness properties as much as possible. The mode

a is retained in order to preserve the damping of this mode for disturbance attenuation.

Thus, Ap = {a}.

To select P, the approach of Section 3.4 was applied. Using a gradient method, the

Frobenius-Hankel norm of E2 was minimized. The frequency response of the dynamic con-

troller associated with this choice of Do is given in Figure 3.11.

3.6.2 Evaluation of Design

The final step was to evaluate the design by applying the controller to the full system.

The spectrum of the resulting closed loop system is shown in Table 3.4. The disturbance

attenuation of the full system is - = -40dB as seen in Fig. 3.13. Thus, the disturbance

attenuation goals of the design have been met using a second order controller. The gain

margins are [0,40dBJ and phase margins are ±70* which approach the stability margins

of the state feedback system. However, if these results are not satisfactory, a higher order

controller could be considered.
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To demonstrate the disturbance attenuation achieved by this design in the time domain,

the time response of the system to a disturbance impulse is computed. The open loop

response is given in Figure 3.14. Note the low damping of the low frequency mode. For the

system controlled by the design given above, the response is given in Figure 3.15. In this

case, the damping on the low frequency mode has increased dramatically.

A controller was also designed foi the y-axis dynamics of the system in a similar manner.

The resulting closed loop system with decentralized controls was seen to be stable and

retain the desired disturbance attenuation properties. Thus, the disturbance attenuation

of an flexible system has been improved using two second order, decentralized controllers

designed by the method of this paper.
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Figure 3.5: The Cruciform Structure.
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Figure 3.6: Model Structure.
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Figure 3.7: Model Input Parameters.
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Figure 3.8: Model Output Parameters.
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Figure 3.14: Time Response of the Closed-Loop System.
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4 Hoo DISTURBANCE REJECTION VIA THE AL-
GEBRAIC RICCATI EQUATION

4.1 Introduction

Sections 2 and 3 have concentrated on results useful in developing methodologies for low-

order controller design. For example, the projective controls approach allows a convenient

parameterization of low-order controllers which retain some spectral characteristics of a

desirable reference controller, and the FH-norm minimization approach provides a means

of determining these free parameters to guarantee-disturbance rejection for the closed-loop

system. The determination of the free parameters of a low-order controller so as to directly

minimize or bound the Ho norm of the closed-loop system is an open issue. While necessary

conditions can be derived, see for example [38,39,40,41], the existence issue is open, and

moreover, convergence of available algorithms is not guaranteed even if a solution exists.

A great deal of research has been conducted on Ho, control design and the related issue

of robust control. For a survey of these two areas, see [42] and its references. In the last

few years, the connection between H., control and the algebraic Riccati equation (ARE) has

been established. See, for example, [431, [441, [2], [451, [46], [47], [48], [49], and [1].

This section concentrates on the ARE based methodology for controller design by which

minimizing, or bounding, the Ho norm of the closed-loop system is accomplished. The

methodology is useful for deriving three classes of controllers: (i) state-feedback controllers;

(ii) full-order observer-based output-feedback controllers; and (iii) decentralized controllers

comprisir.g a full-order observer of the plant in each control channel. The state-feedback and

centralized output-feedback control laws derived by this methodology have been developed

in previous work, such as [481, [1], [47], and [46]. However, the decentralized control laws are

new, and represent a novel approach to H~,-norm-bounding decentralized control design.

For convenience, we restate the standard disturbance-rejection problem to be addressed.

Consider a linear, time-invariant plant of the form

= Ax + Bu + Gwo, (4.1a)
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y= CX+ w,(4.1b)

where z is the state of the plant, u is the control input y is a measured output, z is an

output to be regulated, and wo and w, are squ, re-integrable disturbances. Note that (4.1)

is essentially the same as (2.1), with D = 0.

Given any control input u to the plant (4.1), define the cost functional

J(u) = sup III12 : ulo E L,2[0, o), WO 9 0.
111w0112 J

Note that the measurement (4.1b), and hence the measurement noise w, is not considered

in this definition. Therefore, the cost J(u) is associated with open-loop controls or state-

feedback controls. In the case where u is a state-feedback control, J(u) is the H0, norm of

the closed-loop transfer-function matrix from wo to z. Define the optimal cost as

a 0 = inf{J(u) : u E L 2[0,co)}. (I?)

The following theorem from [48] gives a means of determining aoo, and also establishes :Aat

there exists a state-feedback control law which achieves any HOo-norm bound larger than

a0O.

Theorem 4.1. For the plant (4.1) with (A,B) stabilizable, and (A,H) detectable, the

bound

a00o <aC

holds if and only if

+ XA + 7XGGTX - XBBTX + HTH =O, (4.3)

with X > 0 and A, - A - BBTX + a-2GGTX Hurwitz. If so, the state-feedback control

law

u = -BTXz (4.4)

stabilizes the plant, and gives a closed-loop transfer-function matrix

T(s) H BTX (sI - A + BBTX) -G
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from wo to z satisfying IITII,, <a .

If the control u for plant (4.1) must be generated by a controller that uses only the

measurement y given by (4.1b), then the relevant cost functional is

Jo(u) -sup I11 2 ;WeE L2[0, ),WT = WT TOI  0

The infimal value of the output-feedback cost Jo(u) is generically greater than a,,. defined in

(4.2). The following theorem from [481 or [1] gives a means of determining this greatest lower

bound, and also gives an output-feedback control law which guarantees any given H,,-norm

bound achievable by output feedback.

Theorem 4.2. In the plant (4.1), assume (A, B) stabilizable, (A, C) detectable, (A, G)

stabilizable, and (A, H) detectable. Then there exists a stabilizing controller such that the

closed-loop transfer-function matrix T(s) from w, to z satisfies IITllIo < a if and only if

ATX+ XA + 1XGGTX - XBBTX + HTH =0 (4.3)
Q2

with X > 0 and A, = A - BBTX + a- 2GGTX Hurwitz,

AY + YAT + Y yHTHY - yCTCy + GGT = 0 (4.5)

a 2 2
with Y > 0 and A - yCTC + a 2yHTH Hurwitz, and

a,,{YX} < a (4.6)

If so, then the output-feedback control law

= (A + -2GGTX - BBTX - LC) + Ly, (4.7a)

U = -BTX (4.7b)

with

L = (I - a- 2YX)-1yCT (4.8)
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stabilizes the plant and gives a closed-loop transfer-function matrix from w, to z satisfying

If a decentralized control structure is imposed or desired for a given problem, then the

result given in Theorem 4.2 cannot be used. A great deal of attention has been paid to the

problem of decentralized control design; see, for example, [50], [51], [521, [38], [53], [54], [55],

and [56]. Unlike previous work, the decentralized design procedure derived here addresses

the issue of H. suboptimal control in a decentralized setting, and results in observer-based

designs that rely on a known state-feedback H~,-norm-bounding control. The observer struc-

ture assumed for the controllers allows the derivation of two design equations for the decen-

tralized control law: One of these is the standard state-feedback Hoo design equation; the

other is a Riccati-like algebraic equation (RLAE).

The decentralized-control version of the disturbance-rejection problem is formulated and

a solution derived in Section 4.5. The approach is based on a fundamental lemma described

next, and the spirit of the approach is then illustrated on the centralized control problem

where the result in Theorem 4.2 is rederived.

4.2 The Key Lemma

The following lemma establishes a sufficient condition, in the form of an "algebraic Riccati

inequality," for a given system to be stable and have a particular Ho-norm bound. This

condition provides the basis for all the control laws derived in the remainder of Section 4, as

well as those derived in Section 5. The lemma is a simple extension of Lemma 1 of [57].

Lemma 4.1. Let T(s) = H(sI - F)-G, with (F, H) a detectable pair. If there exist a real

matrix X > 0 and a positive scalar -y such that

FTX + XF + 12XGGTX + HTH <0, (4.9)

then F is Hurwitz, and T(s) satisfies

IITII < y. (4.10)
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Proof Suppose (4.9) holds, with X > 0. To show that F is Hurwitz, let v j 0 satisfy

Fv = Av.

Multiply (4.9) on the left by v* and on the right by v to obtain

2Re(A)v*Xv + vXGGTXv + vrHTHv <0 . (4.11)

Now, 2Re(A)v*Xv < 0 since all other terms on the left-hand side of (4.11) are non-negative.

If Re(A)v*Xv < 0, then v*Xv > 0 and Re(A) < 0. If, on the other hand, Re(A)v*Xv = 0,

then all terms in (4.11) must be zero. Therefore, the eigenvector v of F is in the null space

of H. Since (F, H) is detectable, the corresponding eigenvalue must be in the open left-half

plane. In either case, Re(A) < 0; thus, F is Hurwitz.

Now, to prove (4.10), let w E 11?; add and subtract jwX to obtain from (4.9)

-(-jwI - FT)X - X(jwl - F) + 1 2 XGGTX + H T H <0 . (4.12)

Since F is Hurwitz, (jwI - F) is invertible. Define

K(jw) = GTX(jW F)-G;

pre-multiply (4.12) by IGT(--jwI - FT)-1 , and post-multiply by 1(jwI - F)-'G to obtain

-K(jw) - K T (-jw) + K T (-jw)K(jw) + -1 TT(-jw)T(jw) 0,

which gives

7- - . T (-jw)T(jw) 2 [I - KT (-jw)][I - K(jw)].

Therefore, for all w E i,

I - 2T*(jw)T(jw) _ [I - K(jw)][I - K(jw)] > 0,

which implies (4.10).
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4.3 The General Approach

Lemma 4.1 suggests an approach to deriving Hoo-norm-bounding control designs: The

approach is to first fix a controller structure, so as to determine the form of the closed-loop

system

e Fx + Gw, z = Hexe, (4.13)

and then select feedback and observer gains so that the algebraic Riccati equation

FTX, + XeF +- X,G,GX, + H H =0 (4.14)

has a solution Xe > 0. By Lemma 4.1, if (Fe, H,) is a detectable pair, then the closed-loop

system (4.13) is stable, and T(s) = He(sI - Fe)-Ge satisfies IITIk, <a. 

By taking this approach, the same state-feedback and output-feedback control designs

given in [48] and [1] according to Theorems 4.1 and 4.2 are recovered in Section 4.4. These

derivations are simple, and serve to illustrate the approach and to introduce the derivation

of a new observer-based decentralized control law in Section 4.5. In the decentralized case,

controller feedback gains are computed from the solution to a state-feedback design ARE,

while observer gains are computed from a Riccati-like algebraic equation. The existence

of appropriate solutions to the design equations is sufficient to guarantee the control to be

Hoo-norm- bounding.

4.4 The Centralized Control Design

The output-feedback HO, control law given in Theorems 4.1 and 4.2 are now derived,

based on Lemma 4.1. This derivation, which also appears in [11], is not a complete proof of

Theorems 4.1 and 4.2, in that it establishes only that the designs are sufficient to guarantee

a predetermined Ho-norm bound, and not that any achievable bound can be obtained using

such designs. For this reason, not all the stabilizability and detectability conditions appearing

in Theorem 4.1 and 4.2 are needed.

The problem here is to derive control laws to stabilize the plant (4.1) and provide an Hoo-

norm bound for the closed-loop transfer fmiction matrix from the disturbance w, = (") to
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z. By Lemma 4.1, a sufficient condition for a state-feedback control u = Kx to stabilize the

plant and guarantee the Hoo-norm bound IITIk0o < a is that the feedback gain matrix K

satisfy

(A + BK)T +X(A +BK) +7,XGGTX +(HTK K(.5

with X > 0. Rearrange (4.15) as

A TX+ XA + 1XGGTX - XBBTX + (KT + XB)(K + BTX) + HTH = 0,

which, upon setting K = -BTX, gives the state-feedback design equation (4.3). If (A, H) is

a detectable pair, then the detectability condition of Lemma 4.1 is satisfied for the closed-loop

system. Thus, the state-feedback design given in Theorem 4.1 is recovered via Lemma 4.1.

In the output-feedback case, an observer-based control law will be used to approximate

a state-feedback control u = Kx. To mimic the dynamics of the plant (4.1), the observer

takes the form

=AC+Bu+Gi'o+L(y-CC), u=K, (4.16a)

where a state-feedback model of the disturbance w0 is assumed as

tbo = Kd. (4.16b)

The feedback gain K, observer gain L, and disturbance-estimate gain Kd will be chosen so

that, when controller (4.16) is applied to the plant (4.1), the closed-loop system will satisfy

the hypotheses of Lemma 4.1.

Introduce the error vector e = C - x, and write the closed-loop system as

A++G K (x) + ( G 0 )\ (wo) P\ x ~F~ +G~We, (4.17a)= GKj A + GKd - LC ) + -G L -Wx ,, 41a

z H ( ) (x ) (4.17b)

Similar to the state-feedback case, the goal is to find f(, > 0 such that

1 -- -( 0) .
[ c+ ' + -e+ XAeOG Xe + Hi &  = 0 0 (4.18)
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To ensure decoupling of (4.18) into a state-feedback design ARE and an observer design

equation, look for a block-diagonal solution

* e=(Xo x) -

Then, the upper-left block of (4.18) is exactly Equation (4.15). If, as in the state-feedback

solution, X > 0 solves (4.3) and the feedback gain is given by

K = -BTX, (4.19)

then the upper-left block of (4.18) is satisfiet! The upper-right block of (4.18) then gives

XBB TX + KTGTX 1 - -XGGTXI + XBBTX = 0,

which is satisfied if

Kd = GX. (4.20)

Given the choices (4.19) and (4.20), the lower-right block of (4.18) gives

XI(A + a-2GGTX - LC) + (A + a- 2GGTX - LC)TX 1

+ 1 X(GGT + LLT)X 1 + XBBTX =0. (4.21)

Add to (4.21) the design equation (4.3) to obtain the ARE

(X + X)A + AT(X + XI) + -1(X + XI)GGT(X + XI) - a 2CTC + HTH

+ (1XIL-L aCT) (1LTXI - aC) =0, (4.22)

which suggests the choice for the observer gain L as

XL " a 2 CT. (4.23)

In order that L satisfying (4.23) is guaranteed to exist, impose the restriction X1 > 0. Now

introduce

Y = a2(X + X) - 1 >0

to transform (4.22) into the design ARE (4.5). A solution Y > 0 of (4.5), with a 2Y - > X,

guarantees X, _ 0 solves (4.18) when gains K, Kd, and L are computed from (4.19), (4.20),
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and (4.21). Hence, by Lemma 4.1 the closed-loop transfer-function matrix T(s) = f-I(sI -

Fe)-Ge satisfies ITI s a, provided (P, ff) is a detectable pair.

The needed detectability condition is satisfied if (A, H) is a detectable pair and A, =

A + c- 2 GGTX - BBTX is Hurwitz. To see this, let v T = (vT vT ) satisfy
~= A - B B TX  -BB TX v)=v,4.)

eV =(a-2 GG T X A + a-2GGT X - LC (v) =Av, (4.24)

ftv=( H 0 )V O0, (4.25)-B TX -BTX )V2)

and try to show that Re(A) < 0. The upper half of (4.24) and the lower half of (4.25)

give Av1 = Hv1 , while the upper part of (4.25) gives Hv = 0. Since (A, H) is assumed a

detectable pair, this implies either Re(A) < 0 or v1 = 0. Suppose vi = 0; then the lower half

of (4.24) gives

(A + GGTX - LC) V2 = Av2. (4.26)

Therefore, pre-multiplying (4.21) by v2 and post-multiplying by v2, and using (4.23), gives

2Re(A)v2Xjv 2 + 72v;XGGT X ~v2 + a2 vCTCv2 + v2XBBT Xv2 = 0. (4.27)

Since every term but the first in (4.27) is nonnegative, the first term gives

Re(A)v2Xv 2 <_ 0. (4.28)

If inequality holds in (4.28), then Re(A) < 0. If equality holds in (4.28), then every term, in

(4.27) is zero. Hence, Cv2 = 0 and BTXv2 = 0, and thus (4.26) gives

(A + a-2GGTX - BBTX) v2 = Atv2.

By assumption, A + a-2 GGTX - BBTX is Hurwitz; therefore, Re(A) < 0.

The following theorem summarizes the result.

Theorem 4.3. Suppose (A, H) is a detectable pair, X > 0 satisfies the state-feedback

design ARE (4.3) with A,, = A + a-2GGTX - BBTX Hurwitz, and Y > 0 satisfies the

observer design ARE (4.5) with a,,{YX} < a 2. If the observer gain is given by (4.8), then

the dynamic controller (4.7) stabilizes the plant (4.1), and the closed-loop transfer-function

matrix T(s) = [l,(st - F,)-'Oe satisfies IITIIk < a.
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4.5 The Decentralized Control Design

The same approach applied to the centralized control problem in Section 4.4 is now applied

to the decentralized problem. The design derived here also appears in [14].

Consider again the plant (4.1) with (A, H) a detectable pair. To allow the formulation of

a q-channel decentralized control problem for the plant (4.1), adopt the following notation:

• (B1 B 2  -B9  Bu, (4.29a)

Uq

y1 C, W,

y Y :=( :x + L - Cx + w, (4.29b)

yq Cq Wq

We W(4.29c)

t/q

S, = BB T , iE{1,2,...,q}, (4.29d)

S = Si + S2 +... + S, = BB r . (4.29e)

The problem is to design a controller for each of the q control channels, where the th

controller uses the local measurement y, to generate the local control ui for the plant.

The basic decentralized control law to be developed stabilizes the plant and provides a

predetermined Hoo-norm bound for the closed-loop transfer-function matrix from we to z.

The controllers which make up the control law are based on observers which form estimates

*j, i E {1,2,... , q}, of the state x for feedback. The state estimates are used for feedback so

as t0 approximate the state-feedback control

u = -BTXX, (4.30)

where X > 0 satisfies the ARE

ATX+ XA + - XGGTX - XSX + HTH = 0. (4.31)
2
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That is, the ith control is given by

ui =-BFXi, (4.32)

which approximates a subvector of the state-feedback control (4.30). To mimic the plant

dynamics, the Zih observer should ideally have the form

q

, = A~i + E Bjuj + Gwo + L,(y, - C,,), (4.33)
j=1

where Li is some observer gain matrix. However, since the disturbance wo and the controls

uj, j 3 i, are not available to the observer, (4.33) cannot be implemented directly. Just as

the centralized observer (4.16) uses (4.20) as an estimate of the worst disturbance, the ith

decentralized observer replaces wo in (4.33) by

= GTX&. (4.34)

The 1th observer also replaces uj, j 3t i, by

i= -'Bx , (4.35)

j '

which are approximations, based on the state estimate of the ith controller, of the controls

applied by the other controllers according to their shared strategy. With the control (4.32),

the observer structure (4.33), and estimates (4.34) and (4.35), the ith controller becomes

(A + ' GGTX - SX- LC,) & + L,y, (4.36a)

ui= - Xj, (4.36b)

where the observer gains Li, i E {1,2,. .. ,q}, are to be determined.

Applying the q controllers (4.36) to the plant (4.1) gives a closed-loop system of order

(q + 1)n described by

(7) ( A -BBTX,, ) () + (~ G20) (o) ~F +G c

-I(B X ) (4-37b)
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where T = ( T T ... CT), and

AOC = Diag (Ac,A, • •, A,) (4.38a)

AO = A + -LGGTX - SX, (4.38b)

Bc = Diag (B,B 2 ,...,Bq), (4.38c)

Cc = Diag (C,, C2 ,..., Cq), (4.38d)

Lc = Diag (LI,L 2,..., Lq), (4.38e)

Xc = Diag (X, X,... , X). (4.38f)

For convenience, define also

= [I II] E Rnxqn, (4.38g)

G= IcG, (4.38h)

A= A,,, + IcBBYTXC. (4.381)

Then, transforming coordinates of (4.37) such that the last qn state variables are the errors

ei = i - x, i E 1,2,...,q}, gives

X= Feie + Gewe, z = Heie,

where

M*',., = = -BBcTX, ) e = e'G G (0 (4.39a)( -IGGTX Ac - LcCc )' - Gc L,

SHe .M_ (= H Brx M) I (4.39b)

The existence of a (q + 1)n x (q + 1)n matrix X, _> 0 satisfying
1 ~ T

FT f(, + .e , + f( 0 TX, ,.. + AT/ft, = 0 (4.40)
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will by Lemma 4.1 guarantee stability and an Hoo-norm bound for the closed-loop system

(4.37). Assume the form = x 0X10) (4.41)

with X > 0 solving (4.31) and X, > 0 undetermined, and decompose the left-hand side of

(4.40) into appropriately sized blocks as

+'Xee + -X A T- +AX (11 U12) (4.42)t[.72 +IT U22, ) -. -,,°+ ,= u

Then, it turns out that the off-diagonal block U12 is identically zero, and that (4.31) gives

U1, - 0. Hence, independent of L, and X 1, (4.42) becomes

±2 (0 U)

with

U22 = (A. - Loco)TXi + X,(Ao - 4oC) + + x-La)X + CB.:BYXCX.

Defining W = a 2 X 11, this reduces to

U22 = 12X,{WAT + AW+1WXB B, W wcTc'w
U 2  2 C (4.43)

+ GcG T + (Lc-WCT)(L - C:W)}X,.

It is now possible to pick X1 (or, equivalently, W) and L, such that U22 = 0. While it is

logical in view of Lemma 4.1 to try to eliminate the last term in (4.43), this is not generally

possible, since L, must be block-diagonal. Thus, Lc is chosen to eliminate the n x n main-

diagonal blocks of Lc - WCT . This requires

L4 = WC T , (4.44)

where WD is given by

W21 W22 ... W2q

W = 1qi W22 W WD = Diag (W11, W22,. .. ,,Wq),

1..6q
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or

L=WijCT , iE{1,2,...,q}. (4.45)

Then, (4.43) becomes

U22 = xWA T+ AW + 1WXBBTXW - WCTCCW + (4.46

+ (W - WD)CTC,(W - WD)}Xl.

Therefore, if W > 0 satisfies the Riccati-like algebraic equation

W T 1
WA,' + AcW + -WXcBBTXcW - WCTCCWa (4.47)

+GoGT + (W - WD)CTCC(W - WD) = 0,

then U22 = 0, and (4.40) is satisfied. Since W > 0 is required, , > 0 holds automatically,

and by Lemma 4.1, F, is Hurwitz and T(s) = H,(sI- F,)-10, satisfies IITII. < a, provided

(F,, H,) is a detectable pair. The following lemma provides the needed result.

Lemma 4.2. Given the definitions (4.38) and (4.39), where X > 0 satisfies (4.31), W > 0

satisfies (4.47), and L, satisfies (4.44), the pair (/r,,f-/) is detectable under the following

three conditions:

(i) (A, H) is a detectable pair;

(ii) AO A + a-2GGT X - SX is Hurwitz;

(iii) A, + SX has no eigenvalues on the jw-axis.

Proof Suppose A is an eigenvalue of Fe corresponding to an unobservable mode of (Fe, He);

that is, some v = (vT vT) # 0 satisfies

Aret = A - BB TX -BB.TX I = AV (4.48)a- GG"rx A, - LC, V2

and

-B T X -B ) v =0. (4.49)

The proof now consists of showing that Re(A) < 0.
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The lower block of (4.49) and the upper block of (4.48) combine to give Av1 = Av1 , while

the upper block of (4.49) gives Hvi = 0. Since (A, H) is assumed a detectable pair, this

implies that either Re(A) < 0 or vi = 0. If v, = 0, then the lower block of (4.48) gives

(A, - LC,)v2 = Av2. (4.50)

The detectability proof is completed by showing that A, - LC, is Hurwitz. The bracketed

expression in (4.43) is equal to zero; therefore

(A, - LC,)W + W(A, - LC)T + -1 WXBCBc XW + GGT + =L T = 0 (4.51)

Let 17* be a left-eigenvector of Ac - LcCc corresponding to the eigenvalue A. Multiply (4.51)

on the left by 1" and on the right by r7 to obtain
1

2Re(A,)rfW + W + WXBcBC + 77'GcGrj + r7'LcLrji1 = 0. (4.52)

Since every other term in (4.52) is nonnegative, Re(A)rfWr <_ 0, with W > 0 assumed;

therefore, Re(A) < 0. The following argument demonstrates that Re(A) # 0. If Re(A) = 0,

then every term in (4.52) must be zero; hence, rf'Lc = 0. Then A is an eigenvalue of Ac. But

a simila-ity transformation on A, reveals that it can have no imaginary eigenvalues: If

M=

-1 0 ... I

then
A, 0 + SX S2 X .. SqX

M-1 AcM = A,... 0

where A, is assumed Hurwitz, and A, + SX is assumed to have no imaginary eigenvalues.

0

Under the conditions of Lemma 4.2, P is Hurwitz by Lemma 4.1. Therefore, F, is also

Hurwitz, and the closed-loop transfer-function matrix T(s) = H(sI - Fe)-G, = -Ie(sl -
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/Pe)-t1e from we to z satisfies IITIIo0 < a. Condition (iii) of Lemma 4.2 is a new technical

condition which must be introduced for the decentralized control problem.

The following theorem summarizes the result:

Theorem 4.4. Let (A, H) be a detectable pair and a be a positive scalar. Suppose X > 0

satisfies

ATX+ XA + -XGGTX - XSX + HTH = 0, (4.31)

Aa -A + a- 2 GGTX - SX is Hurwitz, and A, + SX has no jw-axis eigenvalues. Let W > 0

satisfy the Riccati-like algebraic equation

WAC + AW + -2WXcBfBXeW- w CTCW
a (4.47)

+GocT + (W - WD)CTCc(W - WD) = 0.

If the observer gains Li, i E { 1,2,.. q}, are given by

Li = WC7,  (4.45)

then the decentralized feedback control law

, (A +-2GGTX - LCi) ,+ Ljy,, E f{1, 2,. .. , q, (4.36a)

ui= -BTX,, i E {1,2,...,q}, (4.36b)

stabilizes the plant (4.1), with decentralized structure given by (4.29), and the closed-loop

transfer-function matrix

T(s) = He(sI- F,)-'G,

from We to z (with Fe, Ge, and He defined in (4.37)) satisfies

IT11. < ce.

4.6 Example 1

Consider the plant (4.1) with q = 2 and2J B1 (oJB)(0) G (?)
3 0 0 _2 B, = B2= 0 G = 0A= -1 0 -2 -3 0 0 1

-2 -1 2 -1 0 10
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C=[1000] C2=[0010] H=[10 -10].

The spectrum of A is {-2.56, -1.32 ± J 2 .9 2 , +0.191; hence, the plant has an unstable mode.

To compute a decentralized control for this plant, first form the coefficients of (4.47) from

the plant matrices and the state-feedback design equation solution. Then, solve (4.47) by an

iterative method: Compute an approximate solution Wo by ignoring the complicating term

Q = (W - WD)CTCC(W - WD). Then use W to compute an approximation of Q0 of Q,

and use Qo in the obvious way to compute the next approximate solution W1. Iterate this

procedure until the candidate solution W makes the matrix norm of left-hand side of (4.47)

less than some acceptable tolerance; then take Wi as the solution W of (4.47). The tolerance

used for this example was 0.001.

Table 4.1 compares the closed-loop eigenvalues and Ho, norms of state-feedback designs

with those of decentralized observer-based control designs for several values of a. For a > 4,

the state-feedback eigenvalues are easily recognizable in the spectra of the decentralized-

control 3ystems; for smaller a, more interaction with other poles is evident. The sequence of

candidate solutions of the Riccati-like equation converges for a > 2, while the state-feedback

design Riccati equation has an appropriate solution for a > 1.3.

4.7 Example 2

Consider the 5th-order plant (4.1) with q = 2 and

-3 -1 1 2 1 4 0 0

A= 0 1 -1 -1 0J BI= 0), B2= 03, G= 1 J

1 1 -1 0 1 0 0 0
-1 2 1 -2 -2 0 2 k1

10 0 0 0 C2 0 0 0 1 0 H= 0 0 0 001 1 0 0 0 '0 0 0 0 1 '0 0 00

The spectrum of A is

A(A) = f-0.0108 - j3.717, -3.7138, -1.5906, +1.3262};
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Table 4.1: Closed-loop spectra and Ho, norms for varying a.

State Feedback Decentralized Control
Spectrum IITIl Spectrum IT1k00
-0.24 -0.24 -2.52 -1.26±j2.90

a = 20 -2.54 2.30 -0.38 -2.54 -1.47±j2.97 3.64
-1.45±j2.98 -1.07 -2.70 -1.45±j2.98
-0.24 -0.24 -2.52 -1.26±j2.90

a = 16 -2.54 2.30 -0.38 -2.54 -1.47±j2.97 3.63
-1.45±j2.98 -1.08 -2.70 -1.45±j2.98
-0.24 -0.25 -2.52 -1.26±j2.90

a = 12 -2.54 2.29 -0.38 -2.54 -1.47±j2.97 3.59
-1.45+j2.98 -1.08 -2.70 -1.45±j2.98
-0.24 -0.27 -2.52 -1.26±j2.90

a = 8 -2.54 2.27 -0.37 -2.54 -1.47±j2.97 3.49
-1.45±j2.98 -1.09 -2.70 -1.45±j2.98
-0.27 -0.35±jO.08 j -1.26±j2.91

a = 4 -2.54 2.15 -1.18 -2.54 -1.47±j2.97 3.05
-1.46±-j2.98 -2.49 -2.71 -1.45±j2.98
-0.46 -2.36-j0.85 J -1.21 j2.98

a = 2 -2.54 1.76 -0.48 -2.53 -1.47±j2.98 1.995
-1.46±j2.98 -1.38 -2.79 -1.45±j2.94
-2.59

a = 1.3 -3.11 1.30 none none
-1.45±j2.94 1 1 1

hence, the plant has an unstable mode and a lightly-damped stable mode. This section gives

the results of H,-suboptimal control designs for this plant. First, state-feedback solutions

are presented, then observer-based solutions, both centralized and decentralized. For various

values of the design parameter a, the spectrum, feedback and observer gains, and H, norm

for the closed-loop system are given.

4.7.1 State feedback

State-feedback designs can be computed for values of a varying from oo to 1.069199.

For a = 1.069198, the solution X of the state-feedback design ARE (4.3) has a negative

eigenvalue; hence, for all practical purposes, a , = 1.069199.
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The closed-loop poles are the eigenvalues of F = A - SX. Figure 4.1 shows the position

-- aaa

-go Ia - -.- A.L

S- al. LOT

Figure 4.1: State-feedback poles for varying a Example 2.

of the closed-loop poles for a varying from oo to a,. Note that as a decreases from oo to

2.0, the poles barely move. As a decreases from 2.0 to 1.1, the most oscillatory mode is

damped somewhat, and the other complex pole-pair meets at the real axis and splits into a

real pair. Finally, as a decreases in the short interval from 1.1 to a,,, the closed-loop poles

are extremely sensitive to variations in a: The two remaining complex poles move leftward

in the complex plane and meet at the real axis, then one pole goes toward -oo. Naturally,

moving a pole far into the left-half plane requires high feedback gains: The LQ feedback

matrix is
_ ( -0.51 -1.00 -0.21 -0.98 -0.80

KLQ = -0.48 -0.40 0.44 -0.94 -0.47

with resulting closed-loop spectrum

A(F) = {-0.92 ± j3.98, -1.78 ± jO.35, -3.54}
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while a nearly Hoo-optimal (a = 1.07) feedback matrix is

K =( 13.21 -3.67 -51.59 61.76 7.93
K -66.51 3.97 189.88 -235.86 -40.62

with resulting spectrum

A(F) = {-81.54, -10.51, -3.65, -2.63, -1.57}.

These gains are much larger than the LQ gains, and they also have different signs.

Reducing a to aoo = 1.069199 results in gains (and one closed-loop pole) of magnitude

larger than 10'.

4.7.2 Centralized observer feedback

Observer-based centralized controls can be computed by the method given in Theorem 4.1

for values of a ranging from oo to 1.913. For a = 1.912, the solutions X and Y of (4.3) and

(4.5) do not satisfy the condition ,,{YX} < a 2.

Figure 4.2 shows the position of the closed-loop poles for a varying from oo to 1.913. As

a falls from oo to 3.0, the most oscillatory modes are damped somewhat, and all but the

leftmost of the real poles move to the left on the real axis. As a falls from 3.0 to 2.4, the

two leftmost real poles meet, split into a complex pair, circle leftward, meet again on the

real axis, and move apart. Again, as a approaches its minimum, one pole moves off toward

-oo. As a decreases from oo to 1.913, each real-axis pole effectively shifts from its original

LQG position to the LQG position vacated by the pole to its left, leaving the rightmost LQG

position vacant and moving the leftmost real-axis pole toward -oo.

The LQG (a = oo) observer-gain matrix is

1.37 -0.71 0.09 0.21
-0.71 1.95 0.79 0.70

LLQG = 0.40 0.24 0.26 0.31

0.09 0.79 1.03 0.15
0.21 0.70 0.15 0.61

with resulting closed-loop spectrum

A(F) = {-0.92 ± j3.98,-1.78 ± jO.35,-3.54, -1.09 ± j3.82, -1.32,-1.69,-3.78},
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Figure 4.2: Output-feedback poles for a varying a , Example 2.

while the observer-gain matrix for or = 1.92 is

(1.90 94.47 98.89 24.57
L = 1.55 25.95 27.67/ 7.12

3.26 98.89 105.59 25.42
1.29 24.57 25.42 7/.04

with resulting spectrum

A(Fe) -- (-204.31, -1.22 ±- j4.41, -1.47 ±- j3.29, -1.75 ±- j0.42, -3.83, -3.51, -1.651.

Reducing a to 1.913 results in some gains (and one pole) with magnitudes on the order of

103.
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4.7.3 Decentralized control

Decentralized controls can be computed by the method given in Theorem 4.2 for values

of a ranging from oo to 2.3323. The solution of the Riccati-like algebraic equation (4.47)

is obtained using the simple iterative method described in Section 4.6. The smaller the

value of a, the more iterations are required to obtain convergence: For example, to satisfy

a tolerance of 0.001 on the largest singular value of the left-hand side of the Ri:cati-like

equation, a = 10 requires only 6 iterations, while a = 2.35 requires 47 iterations. To speed

up computations for small a, the solution for a slightly larger a can be used as the starting

point; however, this "embedding" practice seems to result in convergence of the algorithm

only when using the starting point W = 0 also results in convergence. For a = 2.3322 and

below, the algorithm does not seem to converge.

Figure 4.3 shows the position of the closed-loop poles for a varying from oo to 2.3323.

II

-z

-6

Figure 4.3: Closed-loop poles for decentralized control, Example 2.
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As a decreases, the oscillatory modes are damped, and the real poles move to the left on

the real axis. Again, as a approaches its minimum, the poles on the real axis seem to be

shifting left into the positions originally occupied by other poles for a = 0o.

For a = oo, the observer-gain matrices are

1.63 -0.90 (0.07 -031
-0.90 2.61 0.98 1.15

L, 0.41 0.40 ,L 2 = 0.31 0.44 ,
-0.04 1.33 1.38 0.16
0.32 0.65 0.16 1.22

while the observer-gain matrices for a = 2.3323 are

(3.03 -3.17 \(5.45 0.97

-3.17 19.26 10.08 6.02
L, 0.33 3.71 L 2  3.58 1.86

-2.16 18.89 11.80 2.40
0.76 2.92 2.40 3.48

Since the solution for a = 2.3323 displays somewhat higher gains and an eigenvalue

moving to the left, it seems a reasonable hypothesis that solutions may exist for smaller a,

giving a high-gain result as in the state-feedback and centralized observer cases.

4.7.4 Spectrum and H,. norm comparisons

The spectra for state-feedback solutions and subspectra for centralized and decentralized

observer-based solutions are shown for various values of a in Table 4.2. The state-feedback

poles are recognizable among the poles of both observer-based solutions. Although the

state-feedback root-locus plot (Fig. 4.1) appears quite different from the other two (Figs.

4.2 and 4.3), the observer-based solutions no longer exist when a is small enough that the

state-feedback poles have moved significantly from their LQ positions.

The Ho norms of the closed-loop systems are compared for a < 5 in Figure 4.4. The

norms are seen to be monotone increasing with a. For a = oo, the H,, norms are IITIk0, =

1.55 for state feedback, IIT1k0 = 3.322 for centralized observer feedback, and IITII,, = 4.61

for decentralized observer feedback, where T(s) is the closed-loop transfer function matrix

in each case. As the theory guarantees, the Ho norms are always smaller than the design
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Figure 4.4: Comparison of actual closed-loop Ho, norms, Example 2.

parameter a. In the state-feedback and centralized observer-based designs, the actual H..

norms and the bound a are very close for a close to the minimum value. In the decentralized

case, the actual norm approaches the bound a in the neighborhood of a = 2.5, then falls

away slightly from the bound as a approaches the minimum value for which solutions of

the Riccati-like design equation were computed. The "slack" in the bound suggests that

decentralized designs guaranteeing smaller norms may exist, possibly corresponding with

solutions of the Riccati-like equation for smaller values of a. Such solutions would have to

be obtained by methods different from those used in this example.
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Table 4.2: Closed-loop eigenvalues.

State Feedback Centralized Decentralized
Output Feedback Control

-0.92±33.89 -0.92±j3.89 -0.92±j3.69
a = oo -1.78±j0.35 -1.78±jO.35 -1.78±j0.35

- 3.54 -3.54 ... -3.54 ...
-0.92±j3.89 -0.95±j3.93 -0.88±j3.94

a 1 10 -1.78-jO.35 -1.77±j0.34 -1.77±j0.34
- 3.54 -3.54 ... -3.54 ...
-0.94±j3.89 -0.97±j4.03 -0.87±j4.02

a = 5 -1.78±jO.35 -1.71±j0.35 -1.74±j0.32
- 3.54 -3.55 ... -3.56 ...
-0.99-j3.89 -l.Ol±j4.17 -0.86±j4.18

a = 3 -1.78±j0.35 -1.73±jO.43 -1.66±jO.46
- 3.54 -3.60 ... -3.58
-1.03±j3.89 -1.04±j4.26 -0.90±j4.35

a - 2.5 -1.78±j0.36 -1.74±jO.43 -1.72±jO.46
- 3.54 -3.46 ... -3.67 ...

-1.12±j3.89 -1.17±j4.39
a = 2 -1.78±jO.36 -1.75±jO.42

-3.54 -3.51 ...
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5 RELIABLE CONTROL DESIGN

This section develops centralized and decentralized control designs which guarantee sta-

bility and a predetermined H,-norm bound despite measurement or control failures. Such

designs are referred to here as "reliable".

There have been various attempts in the past to develop methodologies for the design of

reliable control systems, and these attempts have had differing reliability goals. Among the

most prominent attempts are [39], [58], [59], [60], [61J, [62] and [63]. The design methodology

presented here differs from all previous attempts in that it is the first to produce controls that

guarantee stability and a Ho,-norm bound for the base case when all sensors and actuators

are operative as well as in case of outages of certain sensors or certain actuators.

Section 5.1 presents an example which establishes the need for a reliable decentralized

design. Section 5.2 develops centralized reliable designs, which guarantee stability and an

Hoo-norm bound despite possible outages of sensors or actuators within predefined suscep-

tible sets. The cases of sensor and actuator outages are treated separately, resulting in two

designs with different reliability properties. Section 5.3 presents decentralized reliable de-

signs which guarantee stability and an Hoo-norm bound despite possible outages of certain

control channels in the decentralized system. The control channel outages are modelled first

as measurement outages, and then as control input outages, resulting in two distinct designs

with the same reliability properties. Section 5.4 present results on the design of strongly

stable systems.

5.1 Motivation

The 4th-order example of Section 4.6 is used to motivate the development of a reliable

decentralized control. In this exanple, stability and a predetermined Hoo-norm bound are

guaranteed by the basic decentralized design for various values of the design parameter ct.

Table 5.1 gives the actual H, norms of the closed-loop systems corresponding with several

values of a. In addition to the case when no controller failure occurs, Table 5.1 gives the

conditions corresponding with a failure of each of the two controllers. A failure of Controller
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Table 5.1: H,, norms for the basic decentralized design.

no failure #1 fails #2 fails
a = 20 3.64 unstable 5.34
a = 16 3.63 unstable 5.30
a = 14 3.61 unstable 5.28
a = 12 3.59 unstable 5.23
a = 8 3.49 unstable 5.04
a = 4 3.05 unstable 4.19
a = 2 1.995 unstable 2.46

#1 results in instability for each design computed, while a failure of Controller #2 results

only in an increased Ho norm for the closed-loop system.

Since the plant is open-loop unstable, a failure of both controllers at once necessarily

results in instability; however, it would be desirable to alter the design so as to guarantee

at least stability, and, better still, some level of disturbance attenuation for the closed-loop

system if only one controller should fail. While the basic design in this case still works well

if only Controller #2 fails, it is not acceptable if Controller #1 fails. Therefore, a design

reliable with respect to failure in Controller #1 is desired.

The essential idea in developing a reliable design methodology is that, if there exists

X, _ 0 satisfying

F TX, + XF, + 1 XG,GX, + HTH. + P =0 (5.1)

with some P, _> 0, then the resulting closed-loop system will by Lemma 4.1 be stable and have

Hoo-norm bound a. Choosing P, = 0 in (5.1) yields the basic centralized and decentralized

designs derived in Section 4, characterized by closed-loop stability and the bound IIT[[bo :5 a.

Identification of the appropriate P, can ensure additional system properties associated with

reliability. It turns out that the appropriate choices of P, introduce perturbations into the

basic design equations equivalent to appending columns or rows to G or H in the basic design

equations. Preliminary results on design of reliable control systems were presented in [15].
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5.2 Reliable Centralized Design

The problem addressed here is that of designing a centralized controller which is reliable

despite possible sensor or actuator outages. The outages will be restricted to occur within

a preselected subset of available measurements or control inputs. The controllers developed

will guarantee closed-loop stability and a predetermined Hoo-norm bound, regardless of ad-

missible sensor or actuator failures. The cases of sensor and actuator outages are treated

separately, and two designs are developed to handle the two cases. However, it will be clear

from the results that controllers which can handle both sensor and actuator outages can be

obtained by combining the designs.

Consider first the design of a controller that can tolerate the outage of certain sensors

which provide the various elements of the measurement vector y. Let f l { 1, 2,. . ., dim(y)}

correspond with a selected subset of sensors susceptible to outages. Introduce the decompo-

sition

C = Cn + C11, (5.2)

where CO denotes the measurement matrix associated with f, and Cn denotes the measure-

ment matrix associated with the complementary subset of measurements. In other words,

CO is the same as C, but with rows corresponding with susceptible sensors zeroed out. Let

w C 1 correspond, with a particular subset of the susceptible sensors that actually experi-

ence an outage, and let Tc(s) denote the transfer-function matrix of the resulting closed-loop

system. It is convenient to adopt the notation

C = C. + Cr. (5.3)

where C, and CQ have meanings analogous to those of Cn and Cn in (5.2). Since w C Q,

Cr,,, < CTCo. Also decompose the observer gain as

L = L,, + Lr (5.4)

so that

LC = L,,C, + LC,.
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(L, has columns zeroed out corresponding with sensors which have actually failed.) Then

the following result holds:

Theorem 5.1. With all assumptions and the design otherwise as in Theorem 4.3, assume

X > 0 and Y > 0 satisfy the AREs

TX+ XA - XSX + 1XGGTX + HTH + a2 CTCO =0, (5.5)

AY + YAT + yHTHY - YCOCOY + GGT = 0, (5.6)

respectively. Then, for sensor outages corresponding with any w C fl, the closed-loop system

is stable, and IITrII 0 < a.

Remark 5.1: With all sensors operational, corresponding with w = 0, T() = T(s) is the

transfer-function matrix from w, to z, where

Theorem 5.1 covers this case automatically, since w = 0 C f0. If sensors corresponding to a

nonempty subset w C fQ fail, then T,(s) is the transfer-function matrix from wecr to z, where

Wewd =

with wa, containing only those components of measurement noise associated with operational

sensors.

Proof The design equations (5.5) and (5.6) arise from replacing H in the description of the

plant by the augincnted matrix

H= (Hf) (5.7)

and changing the design equations accordingly. If (5.5) and (5.6) have appropriate solutions,

then Theorem 4.3 guarantees that X, > 0 satisfies

F, + X.F& + G-XXGGeX + HTHe+ = 0, (5.8)

where the augmented closed-loop system is described by the matrices

A SX ) G 01
F, = LC A,, - LC ),I = 0 L 0 -BTX ' 59
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and (F,, H,+) is a detectable pair. The actual closed-loop system with no sensor outages is

described by the matrices

A S (5.10)E, LC Ac -LC)'G 0 L ,- = 0 -BTX "

For sensor outages corresponding with w C Q, the controller becomes

S= (A+'-GGTX- SX- LC) + Lcy, (5.11a)

u = -BTX . (5.11 b)

The controller dynamic structure is not affected by a sensor outage; only the controller input

structure is effectively changed. Given (5.11), the closed-loop system matrices become

LcCc A,, - LC , ~.= 0 Lr , I = 0 -BT

The following useful relations are derived from (5.9), (5.10), and (5.12):

F, = F + (O)(c 0) =Fe, + L eCew, (5.13a)

GeG = 0(LT + (2)(0 LW = GeeeCQ + LeL, (5.13b)

HY+HT +=HTH,+a2(CnT CO 0). (5.13c)

Use (5.8) and (5.13) to obtain

T1 T HH
Xe~e I XGGT e HeFZXe + XeF,,; + XGeGw e

_ r T 1 7" TC(5.14)
--Cew,- - XLeLTw -0 )XL.L&, a0

Therefore, since -CTCo < -CTC,, (5.14) gives

F X, + XeFe + -XGQGTXe + HYHe
r r 1

-C1 Xa2 (5.15)
-~~~ ~~ T-L. +a j(Lx, + Ce") < 0.113-LX + 

LC,.-Xe
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Hence, provided (F,;, H,) is a detectable pair, Lemma 4.1 guarantees that F,; is Hurwitz,

and that Tc,(s) = H,(sI - FG,)-G,, the transfer-function matrix from wed, to zc,, satisfies
IITcl,. < a. The detectability proof is routine: If v = (vT VT) # 0 satisfies FVTiv = Av and

Hv = 0, then Av, = Av1 and Hvj = 0, with (A, H) assumed a detectable pair. Therefore,

either Re(A) < 0 or v, = 0. Suppose v, = 0; then Fv = Fv = Av and H~v = 0 gives

H,+v = 0. Since (F,, He+) is a detectable pair, Re(A) < 0. 0

Consider now the design of a controller that can tolerate the outage of certain actua-

tors which provide the various elements of the control vector u. Let 1 C {1,2, ... ,dim(u)}

correspond with a selected subset of actuators susceptible to outages. Introduce the decom-

position

B = Bn + Bn, (5.16)

where BO denotes the control matrix associated with the set Q, and B0 denotes the control

matrix associated with the complementary subset of control inputs. In other words, Bn is

the same as B, but with columns corresponding with susceptible actuators zeroed out. Let

w C Q correspond with a particular subset of the susceptible actuators that actually fail,

and let T,(s) denote the transfer-function matrix of the resulting closed-loop system. It is

convenient to adopt the notation

B = B + B(5.17)

where B, and B, have meanings analogous to those of BO and Bn in (5.16). Snce w C 11,

BWB! < BB T. Then the following result, dual to Theorem 5.1, holds:

Theorem 5.2. With all assumptions and the design otherwise as in Theorem 4.3, assume

X > 0 and Y > 0 satisfy the AREs

ATX + XA - XBnBoX + -XGGTX + HTH = 0, (5.18)

AY+ YAT + -YHTHY - YCTCY + GGT + a 2BnB =0, (5.19)

respectively. Define

G+ = (G aBn), (5.20)
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and let the controller be given by

~=(A+ GG X _SX -LC)>+ Ly, (5.21 a)

u - BTX . (5.21b)

Assume the controller is open-loop (internally) stable. Then, for actuator outages corre-

sponding with any w C 11, the closed-loop system is stable, and IITrlloo <_ a.

Remark 5.2: For actuator outages corresponding with w C fl, Tr,(s) is the transfer-function

matrix from we to zr., where zr, excludes control components associated with failed actuators.

Proof The design equations (5.18) and (5.19) arise from replacing the matrix G in the

description of the plant (4.1) with the augmented matrix G+, and introducing the corre-

sponding changes in the design equations. If (5.18) and (5.19) have appropriate solutions,

then Theorem 4.1 guarantees that X, > 0 satisfies
1 TX T

FTX, + XeFe + 2 -XeG,+GC+X C + HeHe = 0, (5.22)

where the augmented closed-loop system is described by the matricese .=. ( TX
FeSX Af ) Ge+jG+ 0>Hej~ H 0 ) (5.23)F,= LC A, - LC 0 L) ( e= 0 -BT

with A, -A+a-2G+GT X- SX and (Fe, He) a detectable pair. When there are no actuator

outages, the actual closed-loop system is described by the matrices

F, = L A -S C ) Ge G- 0 ) He H 0 (5.24)

For actuator outages corresponding with w C SI, the controller becomes

~=(A+ 1iG+G X -SX -LC) + Ly, (5.25a)

u = -BrXa . (5.25b)

The controller dynamic structure is not affected by actuator outages; only the controller

output structure is effectively changed. Given (5.25), the closed-loop system is described by

the matrices 0 =) BBXG0)H
Fe (o AL)Ge H~ 0)H~(~ (5.26)

LC A, - LC , = 0 L 0 -B
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The following useful relations are derived from (5.23), (5.24), and (5.26):

F = F.. (B-)(0 B X) a F, - B ,(O B7X), (5.27a)

HTH, = HTH. + ( (0 )(0 BTX), (5.27b)

G,+GT = GeGT + a2 ( BnoBTO ). (5.27c)

Use (5.22) and (5.27) to obtain

T X ,F, + 4 , GGrTX' + HT"H,r
Fe a + (5.28)

_ -(x.B- (A )) (B.TX. - (0 BIX)) : 0.

Provided (Fr,, H,) is a detectable pair, Lemma 4.1 guarantees that FrQ is Hurwitz, and that

Tr(s) = H,,(sI-Fr)-'G. satisfies IIT;;,1Ioo a. To prove detectability, let JT = (VT uT) # 0
satisfy FOv = Av and Hecv = 0; then Avu = Avu and Hvu = 0, with (A, H) assumed a

detectable pair. Therefore, either Re(A) < 0 or v, = 0. If v, = 0, then Fuv = Av gives

( G+ S - LC) V2 = AV2. (5.29)

By the assumption that the controller is open-loop stable, (A + a- G+G+X - SX - LC) is

Hurwitz; therefore, Re(A) < 0. 3

The design given in Theorem 5.2, unlike that given in Theorem 5.1, requires that the

controller turn out stable in order to guarantee reliable closed-loop stability. If the design

does not result in a stable controller, it may be combined with a strongly stabilizing design

developed in Section 5.5; then the assumption of open-loop stability of the controller will

hold automatically.

Note that to achieve reliability with respect to sensor outages, it is sufficient to modify

the feedback and observer gains; however, to achieve reliability with respect to actuator

outages, the observer structure must also be modified. The structural modification required

is the inclusion of G+ in the controller dynamic matrix.
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5.3 Reliable Decentralized Design

Let Q C {1,2,...,q} correspond with a subset of controllers subject to outages. The

problem is to compute a decentralized control law which guarantees closed-loop stability

and an Hoo-norm bound in spite of controller outages corresponding with any subset w C fl.

Without loss of generality, Q = {t + 1, t + 2,..., q} andw = {r+1,r+2,...,q}, with r > t.

Introduce the decompositions

B =(B ...-B, 0 ... 0) +(0...0 B,+1 ... B,) =- B, + B.,, (5.30a)

Bc= Diag(BI, ... ,B,O,0,...,O) + Diag(O,... 0,B,+1,...,B,) -Bcr + B., (5.30b)

C, 0

C'. 00 + Cr+ - Cr. + C., (5.30c)

0 Cq

C, = Diag(C,,..., C,, 0,..., 0) + Diag(0,..., 0, C,,..., C) -- C, + Cc,,, (5.30d)

LC = Diag(L1 , ... , L, 0,... , 0) + Diag(0,... , 0, Lr+i,..., Lq) Lc + L4. (5.30e)

Also decompose the disturbance and regulated output vectors as

toe = = ) = (5.31a)

Z , = .(5.31 b)
UldU (Z)

Finally, define

Bn = (B,+l ... Bq), (5.32a)

C T ... Cq). (5.32b)

Note that for any w C 1,

B n B r >_ B,,B r , (5.33)
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CTCo > CT C. (5.34)

When no controller failures occur, the closed-loop system is described by matrices of the

form

F.= LcC A.c - LecoG 0 L, 0 -B° Xo

where Ac = Diag(A., Ac,..., Ac). Suppose that controller failures take the form

y,=O, iEw. (5.35)

The closed-loop system then takes the form

(i = (-:cT, ;)BX) + ( 0~L~ (wo) = F,.xe + Ge.,W (536a

z H 0 )B~ (x H,. (5.36b)

Because of the assumed mode of failure, given by (5.35), the disturbances wi, i E w, do not

enter the system (5.36). In fact, (5.36) is a controllability canonical form, with i, i E w, the

uncontrollable parts of the extended state vector. Note also that

AQc - LcCc = Diag(A. - LIC1 , A. - L 2C2,... , Aa - LqCq), (5.37)

where A,, - LCi is the open-loop dynamic matrix of the ith controller. Because of the form

of (5.36), the open-loop eigenvalues of the controllers which have failed appear directly as

modes of the closed-loop system. This means that a design guaranteeing reliable stability

will automatically guarantee that all controllers susceptible to outages are open-loop stable.

It is convenient to note that Fe, and G,r are related to F and G, by

F =F. (O)(C. O)-F.-Le.C., (5.38a)

G(0 G 0 (5.38b)
G, =G,- 0 L0,

G.r, G = G.GT - LL . (5.38c)

The design which follows will guarantee that Fe, is Hurwitz, and that the transfer-function

matrix Tr,(s) = H.(I - FG)-'Ge, satisfies IITIojj < a, for controller outages associated
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with any w C 11. The case where no controllers fail (represented by w = 0 _ fl) is always

admissible; hence, the design will automatically guarantee that F is Hurwitz and that

T(s) = H(sI - Fe)-Ge satisfies IITII(. < a. The following theorem gives the reliable

design.

Theorem 5.3. With all assumptions and the decentralized design otherwise as in Theorem

4.4, let X > 0 satisfy

TX+ XA + IXGGTX - XBBTX + HTH + Ca2 CTc = 0, (5.39)

where fl C {1,2,... ,q}. Then, for controller outages corresponding with any w C fQ, the

closed-loop system (5.8) is internally stable, and the closed-loop transfer-function matrix

T,(s) from we, to zr, satisfies IITrIk,, < a. In addition, all controllers corresponding with

the "susceptible" set fl are open-loop stable.

Remark 5.3: The design given in Theorem 5.3 results from replacing H in the description

of the plant (4.1) with the augmented matrix

H+= (H) (5.40)

and changing the design equations accordingly. This substitution results in no change in the

design equation (4.47), and is equivalent to selecting P. in (5.1) as

P0(a2CT  0)>o. (5.41)P= 0 C 0 )- 0

The basic decentralized design computed for the augmented plant will provide reliable control
for the actual plant.

Proof Just as in the development of Section 4.5, the existence of appropriate solutions to

the perturbed design equations (5.39) and (4.44) guarantees -hat X, _ 0 satisfies

+ XeF +-. XGGTX, + H+H + = 0, (5.42)

where

H_+H+ B (5.43)
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Now (5.38), (5.40), (5.42), and (5.43) give

FLXe + XF + 1 XGe TXe+HH

-CTL,,X - XeLC, - "2XL,,Le- (C

Therefore, by (5.34),

F , + XeFe, + a XGerG T X +
aCLTX 1 T X 2 T

< -- TLXe - XLwC, - -XeL.,L Xe - atcT'

= LW + aCl,) (Lex, + aCew) <0.

Hence, provided (F,, He) is a detectable pair, Lemma 4.1 guarantees that F, is Hurwitz,

and that Tr,(s) = He(Is - Fer,)-Gec,, the transfer-function matrix from wcr to zr,, satisfies

IITrIkI < a. The detectability proof is the same as that of Lemma 4.2: Assuming v # 0

satisfies Fc,,v = Av and Hey = 0 gives Av = Av, and Hv1 = 0, with (A, H) assumed a

detectable pair. Therefore, either Re(A) < 0 or v, = 0. If v1 = 0, then (A,,, - LC,)v2 = Av2,

and hence (A, - LCc)v2 = Av2 , where A, - LcC, is known to be Hurwitz. 0

Rccall that the closed-loop system (5.36) assumes measurement failures corresponding

with each i E w. If instead there are control input failures, that is, if the controller failures

are given by

ui=O, iEw, (5.44)

then the closed-loop system has the form

( =( -BrBLX.) (7) + ( G I,) (w?) 'r xe

Z H(0 (Bx)Q)H xe, (5.45b)

where Fe, has been redefined. Note that (5.45) is an observability canonical form, with ,

i E w, the unobservable parts of the extended state vector. In fact, for a given decentralized

control law, (5.36) and (5.45) are just two different realizations of the same transfer-function

matrix. However, the form (5.45) leads to the need for a different matrix Pe in (5.1) to guar

antee reliable stability and performance, and hence to a different control law. Again, the
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closed-loop eigenvalues of the controllers which fail appear directly as modes of the closed-

loop system; unlike the proof of Theorem 5.3, however, the following development must

assume that all the controllers turn out open-loop stable. If some controllers turn out un-

stable, the design of Theorem 5.4 may be combined with a strongly stabilizing decentralized

design developed in Section 5.5.

It is convenient to note that F,e and H, are related to F, and H. by

F. F. + ( B (0 BXr = F. + B,,(0 B TX') (5.46a)

H. = (, + 0 (5.46b)

HT .= HT H. - (0 ) (0 B.,XC). (5.46c)

The following theorem gives the design:

Theorem 5.4. With all assumptions and the decentralized design otherwise as in Theorem

4.4, let X > 0 satisfy

ATX+ XA + 1XGGTX - XSnX + H TH 0, (5.47)2

and let W > 0 satisfy

WA+ + A+W + -WXcBcBTXcW- wccTcw.+ GcGT(.
(5.48)

+ a2JcSnI. + (W - WD)CCo(W _ WD) = 0,

where

IT = [I I ... Il

A = Ac + Diag(SnX, SnX,... I ,

So = BBT
Sa = n +r S,

and fl C {1,2,... ,q}. Let the controllers be given by

(A + -G+G+TX_ SX - LjCj)+L iy, E {1,2,...,q}, (5.49a)
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ui =-BrX6i, i E 1,2,...,q}, (5.49b)

and assume all controllers are open-loop (internally) stable. Then, for controller outages

corresponding with any w C fl, the closed-loop system (5.45) is internally stable, and the

closed-loop transfer-function matrix Tr,(s) from we, to zG satisfies IITrIjoc < a.

Remark 5.4: The design equations (5.47) and (5.48) arise from replacing G in the plant

description (4.1) with the augmented matrix G+ given by

G+ = (G aBn), (5.50)

and changing the design equations accordingly. This substitution affects both the state-

feedback design ARE and the Riccati-like design equation for computing decentralized ob-

server gains. The substitution is equivalent to selecting P. in (5.1) as

P.X.So 0 )X. > 0. (5.51)

The basic design computed for the augmented plant will provide reliable control for the

actual plant.

Proof. As in the development of Section 4.5, the existence of appropriate solutions to the

design equations (5.47) and (5.48) guarantees that Xe > 0 satisfies
FeX + X,F + eXGX, +HH = 0. (5.52)

a2  C

Unlike the dual case, the additional columns of G+ enter into the linear coefficient matrix

F, of (5.52), as well as into the quadratic coefficient as explicitly indicated. This is because

the controller structure (5.49) is affected if G is replaced by G+. Hence, F, and G,+ are now

given by

F, LC Arc - LcCc ,G+ 0 LC

with A , = Diag(A,, A,, ... , A,) and A, = A + a-2 G+GTX - SX. Manipulations of (5.52)

similar to those of the dual case, using (5.46), (5.50), and (5.53), give

F,,X. + XeF + 1 X rGGTXe + TH H

_ - (XB. - (,)) (BLX, - (0 B X0 ) < 0.
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Provided (F,, He,) is a detectable pair, therefore, Lemma 4.1 guarantees that Fr is Hurwitz,

and that T,,(s) = Hec(sI - Fe)-'Ge satisfies IlTrlIIo _5 a. To establish detectability, let

VT = (vT v2T) # 0 satisfy F,v = Av and H6 rv = 0. Then Av, = Avl and Hv = 0. Since

(A, H) is a detectable pair, this implies either Re(A) < 0 or vi = 0. Suppose v1 = 0; then

Frv = Av gives

(Aa - L Cc)v 2 = AV 2 . (5.54)

Since all controllers are assumed open-loop stable, (5.54) gives Re(A) < 0. 0

The two decentralized designs given in Theorems 5.3 and 5.4 model controller failures

as being, respectively, measurement failures and actuator failures. The failures considered

incapacitate entire controllers, so that measurement failures and actuator failures have the

same effect on the closed-loop transfer-function matrix. Although the two designs have the

same reliability goals, they are nevertheless different: The first automatically guarantees

reliable stability if the design equations have appropriate solutions, whereas the second may

exist but not guarantee reliable stability if the controllers are not open-loop stable; the first

design involves only modification of feedback and observer gains as compared with the basic

design, while the second requires also a change in the observer structure; and the range of

the design parameter a for which the two designs are computable may differ.

In the centralized case considered in Theorems 5.1 and 5.2, the failures considered are

those of individual sensors or actuators. Therefore, the two centralized designs differ not

only in the view taken of controller failure, and in other technical terms, but also in the

reliability properties they seek to guarantee.

5.4 Example

For the example in Section 4.6 reliable designs have been computed for both the centralized

and decentralized cases.

Centralized designs reliable with respect to an outage of each measurement were com-

puted for several values of the design parameter a according to the procedure given in

Theorem 5.1. Table 5.2 gives the actual HO, norms 11:1. of the resulting closed-loop
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Table 5.2: Ho, norms for basic and reliable decentralized designs.

Basic Design Reliable Design 1 Reliable Design 2
no Y1 Y2 no Y1 Y2 no Y1 Y2

failure fails fails failure fail fails failure fails fails
a = 20 3.09 unstab. unstab. 4.38 2.90 2.95 4.34 4.68 4.26
a = 16 3.09 unstab. unstab. 4.26 2.78 2.88 4.29 4.46 4.11
a = 12 3.06 unstab. unstab. 4.06 2.61 2.78 4.21 4.13 3.89
a = 8 3.01 unstab. unstab. 3.76 2.38 2.76 4.12 3.55 3.46
a = 4 2.72 34.28 unstab. 3.38 2.22 2.48 aY - X 0
a = 2 1.95 4.41 unstab. ciY - ' - X 0 aY - - X 0

transfer-function matrices. Results corresponding to the designs reliable with respect to

outages of yj and Y2 are labelled "Reliable Design 1" and "Reliable Design 2," respectively.

For each design, results are given corresponding to no sensor failure, failure of yl, and failure

of Y2. For the sake of comparison, Table 5.2, includes H. norms corresponding to the basic

centralized output-feedback design given in Theorem 4.3.

Reliable Design 1 theoretically guarantees stability and the closed-loop Ho,-norm bound

a only for failure of yi, and Reliable Design 2 only for failure of y2; but in this example,

each reliable design gives stability and the Ho,,-norm bound in case of a failure of either

measurement. In fact, a measurement failure would seem to result in a reduced H,, norm

for the closed-loop system. This is so, however, because a measurement failure removes from

consideration the corresponding measurement noise, effectively eliminating one column of

the transfer-function matrix. More meaningful is a comparison of this (reduced) transfer-

function matrix in the case of a failure with the corresponding transfer-function submatrix in

the base case. Such a comparison shows that the Ho norm in case of a failure is larger than

it is when no failure occurs. For example, Reliable Design 2 for a = 8 results in the norms

IIT211Io = 3.55 and II"'iIIo = 3.46, as shown in Table 5.2, while the corresponding parts of

the base-case transfer-function matrix (after elimination of the appropriate columns) have

norms IIT21100 = 3.30 and lIT lbl0 = 3.01.

The reduced cost which can be achieved by eliminating measurements and their corre-

sponding noise inputs does not constitute a valid argument for discarding one measurement
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and using the other alone. The use of both measurements provides reliability, in that a single

sensor failure will not result in system instability.

Note that the solution of the observer-design ARE satisfies the condition a2 Y - 1 = X > 0

only when a > 4 for Reliable Design 1, or when a > 5 (the case a = 5 is not shown)

for Reliable Design 2, while solutions were computed for the basic design with the design

parameter value as small as a = 2. this difference is an indication of the tradeoff between

reliability and performance guaranteed by the respective designs.

For the same example, a decentralized control design reliable with respect to the failure

of Control Channel 1 was computed for various values of the design parameter a according

to the procedure of Theorem 5.3. Table 5.3 gives the actual Hoo norms of the closed-

Table 5.3: Hoo norms for basic and reliable decentralized designs.

Basic Design Reliable Design
no failure #1 fails #2 fails no failure #1 fails #2 fails

a = 20 3.63 unstable 5.34 6.95 6.25 7.03
a = 16 3.63 unstable 5.30 7.65 6.38 7.82
a = 14 3.61 unstable 5.28 8.28 6.32 8.59
a = 12 3.59 unstable 5.23 No solution to RLAE found.

loop transfer-function matrices resulting when the reliable design was computed for several

values of a. Conditions corresponding with no control failure, with failure of Controller #1,

and with failure of Controller #2 are given. For the sake of comparison, the comparison,

the comparable portion of Table 5.3, corresponding with the basic decentralized design, is

reproduced.

Table 5.3 shows that the reliable design guarantees stability and Ho-norm bounds a in

spite of a possible failure of Controller #1. As in the centralized case, the reduce H,, norm

in case of a failure of Controller #1 results since, when Controller #1 fails, the disturbance

w1 and the control input ul are removed from consideration, eliminating one column and one

row from the closed-loop transfer-function matrix. Again, this apparent reduction in cost

does not constitute a valid argument for discarding Controller #1 and using Controller #2

alone, since the use of two controllers provides reliability, in that a single controller failure will
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not result in system instability. No solution was found to the Riccati-like algebraic equation

for the reliable design with a < 13, illustrating again the tradeoff between reliability and

disturbance attenuation.

5.5 Strongly Stabilizing Designs

The designs given in Theorems 5.3 and 5.4 provide decentralized control laws which are

reliable with respect to controller outages. For the design given in Theorem 5.3, all controllers

susceptible to outages are automatically stable; however, for the design given in Theorem

5.4, the controllers must be assumed to turn out stable for the closed-loop system to be

guaranteed stable. It is therefore of interest to develop designs which stabilize the plant

via a stable control law. Such designs are referred to as "strongly stabilizing." Strong

stabilization has been treated in [64], where a necessary and sufficient condition for the

existence of a strongly stabilizing controller is given.

A decentralized design is now developed to guarantee open-loop stability of some subset of

controllers, without regard for performance in case of a controller outage. This design may be

combined with that of Theorem 5.4 so as to guarantee beforehand that specified controllers

will turn out open-loop stable. As a special case, a sLrongiy stabihzing centralized design is

also derived.

With the design otherwise as in Theorem 4.4, suppose Equation (4.47) is replaced by

WAT + aCtW + 1WXBcB T XoW -wccCW +
a2  

C -W (5.55)

+ (W - WD)CTC(W - WD) + P = O.

For any P > 0, the design guarantees closed-loop stability and the H - oo-norm bound

1T11o < a. The object is to select P > 0 so that the ;th controller is open-loop stable.

Rewrite (5.55) as

W(AC - LcCc)T + (Ar - LcC)W + -WXBcB TX W + GcGT + LcLT + P = 0. (5.56)

Recalling the definitions Ac = Diag(A ,,Aa,... A,,), IT = [I I... I], and Ac = A0  +
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ICBBCXC, rewrite (5.56) as

W(A. - LCC)T + (A 1c - LQC)W + 1WXBc BTX.W (57)

+GcGcT + LcL T + P + IcBBTXcW + WXBcBTIT = -.

The ith n x n main-diagonal block of (5.57) is

WH(As - LiC,)T + (A1 - L,C,)W,, + 1(W,... V,,)XcBcBx

(5.58)
+GGT + LLT + Pj + BBTX¢ W,, + (Wi, ... Wiq)XcB B T = O,

where the linear coefficient (A,, - LC,) is the open-loop dynamic matrix of the ith controller.

To ensure that (A,, - LC,) will be Hurwitz, let Pi = a2 S = a2BBT. Then (5.58) becomes

Wuj(A. - LjC,)T + (A. - LjC)W,, + GGT + LLT

- +(Wil ... Wiq)X:Bc) <0,(5.59)

with W,, > 0. To see that this is sufficient to guarantee that (A,, - LC) is Hurwitz, let

v 3 0 satisfy (A, - LjC,)Tv = Av. Then (5.59) gives

2Re(A)v*Wv + v*LiLTv < 0,

and hence Re(A) < 0. But inequality must hold here, because Re(A) = 0 implies LTv = 0,

and hence ATv = )v, with A,, assumed Hurwitz.

Note that Pj > a2 S guarantees that the ith controller will be stable, independent of

the other main-diagonal blocks of P. Therefore, several controllers may be simultaneously

guaranteed open-loop stable by selecting the main-diagonal blocks Pj of P to satisfy P, > 0

if the ith controller need not be stable, and Pii > a2 S if the ith controller must be stable.

Other blocks of P may be chosen in any way that makes P > 0, such as setting them all to

0.

The following theorem summarizes the result.
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Theorem 5.5. Let P be any qn x qn matrix satisfying

P > Diag(P , • • • , Pt,, 0,. . ., 0),

where Pj = a 2S for i E {1,2,... ,t}. With all assumptions and the design otherwise as in

Theorem 4.4, suppose Equation (4.47) is replaced by

1 _
WAC + AW + -WX B,3¢XcW - wcTcCW + GCGc

; 2  (5.60)

+ (W - WD)CTC(W -- WD) + P = 0.

Then the design, in addition to its other properties, guarantees that the controllers in the

first t control channels are all open-loop stable.

The result of Theorem 5.5 is easily specialized to the centralized case. It is important

to note, however, that the solution W of the Riccati-like design equation with q = 1 is not

the same as the solution Y of the observer design ARE in the centralized case. Therefore,

the reformulation of the design equations to guarantee strong stabilization in the centralized

case is not as simple as that given in Theorem 5.5. The following theorem gives the correct

formulation.

Theorem 5.6. With all assumptions and the design otherwise as in Theorem 4.3, let Y > 0

satisfy the ARE

YF r + FY + 72IYHTHY - YCTCY + -YXSXY + GGT + a 2S = 0, (5.61)

where F = A - SX, S = BBT. Then the system is strongly stable, and the closed-loop

transfer-function matrix satisfies IITIIk < a.

Proof For the special case q = 1, the strong stabilization result of Theorem 5.5 still holds.

In this case, the design equation (5.60) is

W(A + c. 2GGTX)T + (A + &-2 GGTX)W + -WXSXW
(5.62)

- WCTCW + GGT + ot2S = 0.
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Hence, the proof consists of showing that (5.61) implies (5.62). Recall the assumption from

Theorem 4.3 that a,.{YX} < a 2 or (a 2 Y-" - X) > 0. This implies that there exists a

matrix W > 0 such that

W-I = y- 1 - a-2 X. (5.63)

Then, routine manipulations of (5.61) give the equivalent equation

YAT + AY + 1±YHTHY - yCTCy + GGT + a 2 YW-ISW-'Y = 0. (5.64)
2

Pre- and post-multiply (5.64) by Y', and use (5.63) to obtain

A T(- 2X + W - 1) + (a- 2X + W-)A + (a- 2X + W-I)GGT (a- 2X + W -1 )
(5.65)

+ -2HTH- CTC + a 2W- 1 SW- 1 =0.
aO.

Now, divide the state-feedback design ARE (4.3) by a 2 to obtain

AT(a-X) + (&- 2 X)A + (a- 2 X)GGT(,- 2 X) - - XSX + -HTH = 0, (5.66)

and subtract (5.66) from (5.65) to obtain

ATW - 1 + W-'A + (a- 2X)GGT W - 1 + W-GGT(C- 2X)

(5.67)

+WGG T W -1 - cTC + +S a2 W-SW - =0aO.

Finally, pre- and post-multiply (5.67) by W, and rearrange terms to obtain (5.62). 0
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6 EXTENSIONS

6.1 Robust Decentralized Control

The decentralized design methodology given in Section 4.7.3 is now extended to apply to

a plant with structured (parametric) uncertainty. The resulting designs guarantee robust

stability and an Ho,-norm bound for the closed-loop system, for any plant uncertainty in a

bounded admissible set.

The results and methods applied to the study the robust control problems of interest here

are closely connected to the topics of quadratic stability, and to H"-norm optimization.

Among the relatively few papers that actually treat the problem of robust Ho -bounding

control in the presence of structured parametric uncertainty is [65], where a perturbations

in (A, B, C) is represented as additional weighted noise inputs and measured outputs. The

procedure suggested in [66] is then followed to solve the problem. As a consequence of the

selected linear and quadratic bounding function a controller is defined via three coupled

Riccati-like equations. The procedure developed here is in the same spirit, but with the

restriction of plant variations in the A matrix only. The applied approach, which in essence

implies a different bounding procedure, leads to two decoupled design equations.

The results are of interest is particular because they explain to the decentralized control

case, but they also apply easily to the simpler state-feedback and centralized output-feedback

cases, which are omitted here.

Structured uncertainty is introduced into the plant A-matrix according to the definition

A = Ao + ZGkMHk, (6.1)
k=1

where A0 is known, the Gk's and Hk's give the structure of the uncertainty, and each unknown

constant matrix Mk satisfies

;,. MkM T } < 0,2 k (6.2)

If each positive bound Ok is sufficiently small, then the design equations to be derived for ro-

bust control will have appropriate solutions. The existence of such solutions guarantees that

the computed control law provides the desired robust stability and disturbance attenuation.
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6.1.1 Robust design derivation

The derivation of the robust design methodology is similar to that of the reliable design

methodology given in Section 5. The essential idea of the derivation is to formally express

a sufficient condition for stability and disturbance attenuation for the nominal system, in-

cluding a formal representation of some design freedom, and to determine how to use that

freedom to guarantee robust stability and performance for the actual system.

The first step in the derivation is to fix the observer structure of the control law, and

write the desired condition

FoXe + Xe Foe + 1 XeGeGTXe + HrHe + P = 0, (6.3)

where (Fe, G., H,) describes the nominal closed-loop system, and P. _ 0 is as yet unspeci-

fied. An appropriate value of P will be chosen to guarantee desired robustness properties.

The plant uncertainty terms are omitted in (6.3), so that

Foe -(LoC Ao.c -LcCc'

where Ao represents the nominal plant dynamics, and the block-diagonal matrix Ao,, - LCc

represents the dynamics of the decentralized control law to be determined. Taking into

account the plant uncertainty (6.1), the actual closed-loop dynamic matrix is given by

Fe=Fo+ ( Gk) Mk(Hk 0) E Fo. + F .ekMkHek. (6.4)
0= k=1

Using (6.4), rewrite the condition (6.3) as

FTXe+X eFe+ XeGeHX + TH -+(-F)X+X(FF.)

r (6.5)
-P + ,..Z{HkM GTX + XGekMkHk}.

k=1

Now, Pe 0 may be chosen such that the right-hand side of (6.5) is negative semi-definite.

Recall that ork is given by (6.2), and set

t 7

P. = -{HH.k + 0,2XeGkGTXe1 > -{H.THk + XeGekMkTM GXe}, (6.6)
l=k k=l

131



so that, after some manipulation, (6.5) gives

F x, + Xj.F + -LX.GGT*X, + HTH.

-1
C,2

-E - XeGek Mk}IHek MT T X.}

Ej{XeGk(7I - MkM[T)GT X"} < 0.
k=I

Therefore, if X, > 0 satisfies (6.3), with P. given by (6.6), then the uncertain system satisfies

the main hypothesis of Lemma 2.1.

The next step in the derivation of the robust control is to determine the needed mod-

ifications to the design equations (4.28) and (4.44) so that Xe _ 0 satisfies (6.3), with P

given by (6.6). By examination of (6.3) and (6.6), and of the definitions of G, and He given

in (4.34), it is easily seen that
1 T 1. + H T

-jXGGTX + HTH, + P, = -XG+G + He+,

where

G.+=(+ ) ,G+-(G aa, G, ... aou.Gp), (6.8a)

-H,,+ H 0 H.H (6.8b)
0 -BT~

Hence, the robust design is obtained by replacing the triple (A,G,H) with the triple

(Ao, G+, H+) in the design equations (4.28) and (4.44) for the basic design. Using the

augmented matrices G+ and H+ in the design equations is similar to introducing additional

disturbance inputs and regulated outputs into the problem. Therefore, the smallest value

of a for which the design equations will have a solution will be larger for the robust design

than for the basic design.

Recall that, in the basic design, the controller dynamics depend on an assumed worst

disturbance, and hence on the matrix G. Therefore, replacing G with G+ in the design

affects not only G, but also Fo0.
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The final step in deriving the robust design is to establish that (F, He) is a detectable

pair. Note that Lemma 4.2, applied to the modified design, establishes that (Fo,, H,+) is

a detectable pair, provided (Ao, H) is a detectable pair, Aoa -- Ao+O,- 2G+G+X - SX is

Hurwitz, and Ao. + SX has no jw-axis eigenvalues. Let v # 0 satisfy

Fv = Av, Hv = 0. (6.9)

The detectability proof consists of proving that Re(A) < 0. Multiply (6.7) on the left by v"

and on the right by v to obtain

1 + T M X'V

2Re(A)v*Xv + VX GGTX, + Zv'*{H T - X.GkMk}{Hk - T e
k=1

(6.10)

+Zv{XeGek(u.I - MkMk,)GeXk}V < 0.

Since every term in (6.10) but the first is nonnegative, this implies

Re(A)v*Xv <0 . (6.11)

If inequality holds in (6.11), then v'Xev > 0 and Re(A) < 0. If equality holds, then every

term in (6.10) is zero. This gives

{Hk-MkTGkX}v = O, k E {1,2,... , r}. (6.12)

But, since (6.2) implies aI - MkM Tj is nonsingular, (6.10) also gives GkXv = 0, so that

(6.12) gives

HkV = O, k E {1,2,...,r}. (6.13)

Hence, (6.4) and (6.9) give Fo,.v = Av, while (6.8b) and (6.9) give HT+H+v = . Since

(Fe, H,+) is a detectable pair, this implies Re(A) < 0.

Theorem 6.1 summarizes the result. The following definitions are convenient:

Ao,= Diag (Ao.,Ao.,...,Aoa), (6.14a)

Ao, = A0 + G+GTX - SX, (6.14b)
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Ao, = Ao., + ICBBTX, (6.14c)

G + IG+. (6.14d)

l =[I I .. I] E Rnlx ' ' .

Theorem 6.1. Suppose the plant (2.1), with decentralized control structure given by (4.26),

has constant structured uncertainty (6.1), with

A.,,{MkMk} <Ok, k E {1,2,...,r}.

Define G+ and H+ as in (6.8), and let X > 0 satisfy

ATX+XAo+ 1XG+GTXX XSX + HT+H+ = 0, (6.15)

and W > 0 satisfy the Riccati-like algebraic equation

Wa + AoW + 1WXcBB XW - WCTCeW2  C.(6.16)

+Go+GT+ + (W - WD)Cr "c(W - WD) = 0.

Suppose also that (Ao, H) is a detectable pair, Aoa is Hurwitz, and A,., + SX has no eigen-

values on the jw-axis. Then the decentralized control law

i= (Ao.-LjC,)4 ,+Ly, iE {1,2,...,q},

ui=-BTX, iE{1,2,...,q},

with Li = WC, i E {1,2,. .. ,q}, robustly stabilizes the uncertain plant, and the closed-

loop transfer-function matrix T(s) from w. to z satisfies

IITII1 5 a.

There is no explicit restriction on the size of the bounds ak in Theorem 6.1. However, the

larger the ak's are taken to be, the larger a will need to be to obtain solutions to the design

equations (6.15) and (6.16); if the ak's are taken to be too large, no solutions may exist at

all. If bounds ak on the size of the uncertainty are known accurately, then these bounds
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should be incorporated in G+ (or H+), and hence in the design equations. If the resulting

design equations can be solved, then the design can tolerate uncertainties of the specified

size. On the other hand, if uncertainty bounds are not accurately known, the choice of the

a 's may be used to reflect a relative weighting to be given by the design to disturbance

attenuation and robustness considerations. Since changing the values of the ak's in this case

is equivalent to rescaling the Gk's and Hk's while holding the Ork's fixed, it may simplify the

design procedure to set
1

O'k=-, kE{1,2,...,r},

and scale the Gk's and Hk's with respect to G and H so as to reflect the tradeoff between

robustness and disturbance attenuation. Then, the size of the uncertainty which may be

tolerated is determined indirectly by finding the smallest value of a for which the design

equations can be solved. This variation on the above design is given in Theorem 6.2.

Theorem 6.2. Suppose the plant (2.1), with decentralized control structure defined by

(4.26), has constant structured uncertainty (6.1), with
1

Am{ k < -, k E j1,2,..,r}.

Define G+ = (G G, ... G,) and HT = (HT H...HT). Let X > 0 satisfy (6.15) and let

W > 0 satisfy the Riccati-like algebraic equation (6.16). Suppose also that (Ao, H) is a

detectable pair, A0 , is Hurwitz, and A0 ,, + SX has no eigenvalues on the jw-axis. Then the

decentralized control law

ei = (Ao, - LCj)4j + Ljyi, i E {1,2,..., q},

ui = -Bri XEi, i E {1,2,...,q},

with Li = WiC T , i E {1,2,... ,q}, robustly stabilizes the uncertain plant, and the closed-

loop transfer-function matrix T(s) from we to z satisfies

IITIIo __
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6.1.2 Example

This section presents an example of robust state-feedback control design. The example

illustrates the difference between the robust designs of Theorems 6.1 and 6.2, and the use

of the parameter a, to determine the largest uncertainty in a certain class for which the

design guarantees stability and the predetermined H,,-norm bound. For these purposes, a

state-feedback example is adequate, and has the advantage of avoiding the complication of

decentralized design, already studied in Section 4.

Consider nominal plant

-2 1 1 1 00 1

3 0 0 2 B= 1 0 G 0 H=(10 -10),A= -1 0 -2 -3 0 0 G= 1

-2 -1 2 -1 0 1 0

and introduce the structured uncertainty

A = Ao + GIMIH1 ,

where M, is an unknown scalar, and G1 and H1 are given by

G1= 0(, ,H1 = (0 0 10). (6.17)
1

This represents an uncertainty in the (4,3) element of the A-matrix of the plant. As in the

decentralized design of Theorem 6.1, the robust state-feedback control is found by doing a

basic design, but with the augmented matrices G+ and H+ in place of G and H, where in

this case

+= 0 0 1 0 -1 0G+ 1 0 ,H+- 0 0 1 0 "
0 aal

The state-feedback design equation becomes

A+XAo+- XG+GX- XSX + H+H+ = 0,
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or equivalently

AX + XAo + 1 XGGTX + 0XGIGX - XSX + H T H+HTH,= 0. (6.18)

In the second quadratic term of (6.18), the a's cancel out, allowing computation of a solution

for a = oo. By setting a = oo and solving (6.18) with various values of or,, one may determine

a largest plant perturbation (corresponding with 1M1I = a,,.) for which at least stability

can be guaranteed using the robust state-feedback design. Then, given any a1 - alm,

one may determine a number am.i such that for any a > ami there exists an appropriate

solution of (6.18), and therefore an associated design guaranteeing the robust Hoo-norm

bound ITIIk0 > a for the closed-loop system. Table 6.1 gives the values of adn, to the nearest

0.1, computed for various values of a,, and shows clearly the tradeoff between robustness and

optimal disturbance rejection. In this example, the largest admissible plant perturbation is

given approximately by a,.,. = 1.8.

Table 6.1: Approximate minimum Ho-norm bounds for various plant uncertainties.

al, 1.0 1.2 1.4 1.6 1.8
a~min 1.4 1.5 1.6 1.8 3.0

If a, = a-, as in Theorem 6.2, then for G, and H, given by (6.17) the design equation

becomes

4X + XAo + 72X(GGT + GG')X - XSX + HTH + H1 H, = 0. (6.19)

The approximate smallest value of a for which (6.19) has an appropriate solution is a -

1.4, which corresponds with a plant uncertainty bound a, = 0.71.

6.2 Computation of Families of Ho, Control Laws

6.2.1 Introduction

Given a set of control design requirements, a designer may wish to characterize a family

of control laws which satisfy these requirements. The characterization of a family of such
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admissible control laws may permit the selection of a particular controller with additional

desirable properties.

Youla et aL. [671 give a parameterization of all stabilizing controllers in terms of sta-

ble coprime factorizations of the plant and a baseline stabilizing controller. The parameter

space consists of the set of all stable pruper transfer-function matrices Q(s) of appropri-

ate dimensions. Doyle et aL. [1] and Glover and Doyle [47] give a paranieterization of all

stabilizing controllers which provide the Ho,-norm bound IITII,, _< a for the closed-loop

transfer-function matrix T(s). The parameter space consists of the set of all stable proper

transfer-function matrices Q(s) of appropriate dimensions satisfying IIQIIO _< a. The con-

troller parameterizations given in [67], j1], and [47] have the advantage of spanning the

set of all controllers with the desired (stabilization or disturbance-attenuation) properties.

Unfortunately, they have two substantial disadvantages: First, they include controllers of

arbitrarily high order; second, they do not retain the structural properties of the baseline

controller, such as strict properness or decentralized control structure. Restricting the order

of the parameter Q(s) also bounds the order of the controller; however, structural properties

of the baseline controller are still not retained.

Based on the parameterization of Youla, [68] gives a characterization of all stabilizing

decentralized control laws. The approach is simply to restrict the Youla parameter Q(s) to

values which give control laws with block-diagonal structure. This restriction is shown to be

equivalent to a set of matrix algebraic constraints on the parameter. Unfortunately, there

is no clear way of selecting the parameter to satisfy these constraints. Even if appropriate

parameters could be found, the corresponding controllers would still not retain the order or

strict properness of the baseline controller.

This section gives a characterization of families of Ho,-suboptimal control laws starting

from known baseline designs. The derivation of the baseline controllers in each case has been

accomplished in Section 4 by fixing a controller structure and selecting controller parameters

such that a certain algebraic Riccati equation (ARE), with closed-loop system matrices as

coefficients, has a positive semi-definite solution. In this paper, families of controllers are
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derived by retaining the baseline controller structure and finding controller parameters such

that a relaxed sufficient condition, in the form of an algebraic Riccati inequality, is satisfied.

Suitable controller parameters are found by exploiting a convexity property of a matrix

Riccati function.

First, a family of state-feedback gains all of which guarantee the same Ho,-norm bound

is given. Then, a family of observer-based output-feedback controllers is given, based on

some member of the state-feedback family. Each member of the output-feedback family

has the same observer structure; therefore, each is strictly proper and is of the same order

as the plant. Finally, a family of decentralized control laws is derived in the decentralized

case, where the baseline controller contains a full-order observer of the plant in each control

channel. Again, the (strictly proper) observer structure and the controller order are retained

by each member of the family.

No claim is made that the families of controllers given here include every controller with

the desired characteristics; however, the families are easily computed, and ey-lude all non-

strictly proper and high-order controllers.

6.2.2 The matrix Riccati function

This section gives some properties of a matrix Riccati function related to the computation

of families of Ho,,-suboptimal control laws. The matrix Riccati function is studied in greater

detail in [101.

Define the matrix Riccati function R on the space of symmetric matrices by

R(X) = FTX + XF + -XGGTX + HTH. (6.20)

Then the following property is eesily verified:

Lemma 6.1. Suppose F is Hurwitz and R(X) = 0. Then X > 0.

Proof Write out R(X) = 0 as

R(X) = FTX + XF + 1XGGTX + HTH = 0. (6.21)
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Define P = a-2XGGTX+HTH. Then (6.21) becomes FTX+XF+ P = 0, with F Hurwitz

and P > 0. By inertia theorems of the Lyaunov equation (see, for example, (201, X > 0 0

The following lemma gives a matrix convexity property for R. This property does not

require that F be Hurwitz, but only that the quadratic coefficient be positive semi-definite.

Lemma 6.2. For i E {1,..., r}, let Xi be symmetric matrices and f3i be nonnegative scalars

satisfying rI3i = 1. Then

R { j3X) <: #j3iR(Xi). (6.22)

Proof Compute

R {IX} I FT { iX} + IriXt} F + -1 { GGT  PX} + H T H

- Z~fi(FTX, + XF + HTH) + jiI~ X1 GGTX3

SZ,8R(X,)-H H E f Zi3 X, GG(X,- Xj)

i---- 1=1 j---1

r r rr--

- Z13R(X,) - -72E 3 ,3,GGTX - X,) E jfj~G

i=1 i=X Iol

1 T( ,_ ,

+1__ _Z - 72 :, XG (xJ -X,)

I2 i---1 j---- +'

r1 r iT

=F ~ 33X T(X, -X,)
= #iR(Xi) - # = jffi G

t= i=l j=1 
S

+72E Z 1,13X.GGT(X, _ X.)
i=1 1

7 1 r* i-I= EiR(X,) - - ij - X)G GT(x - X).

i=1 Q2 i=1i j---1

i=1

i=1 1=1 j=1
(6.23)
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r

Therefore, R {Er=/3iR(X,)} :_ FlR(Xj), the desired result. 0
i=1

The following corollary identifies a class of easily computable matrices Z >_ 0 for which

R(Z) < 0:

Lemma 6.3. Let Z be any convex combination of matrices Xi 0 0, i E {1,2,...,r},

satisfying R(X,) = 0.

Then Z > 0 satisfies

R(Z) :5 0. (6.24)

Proof Express Z as

z =

where ET=fl, = 1. From Lemma 6.1 Z > 0, and from Lemma 6.2,

R(Z) = R {Zl9X} < ZI3R(X,) = 0.

0

6.2.3 A family of state-feedback controls

Note that, for the state-feedback case, any matrix X > 0 satisfying (4.8) is suitable for

computing the control u = -BTXX. In fact, this control would still be suitable if the

left-hand side of (4.8) were negative semi-definite; that is, any control law given by

u = -BTZz, (6.25)

+ZA + 2ZGGTZ ZBBTZ + TH<0, Z>O (6.26)

provides stability and the Ho,-norm bound a for the closed-loop system.

A given solution X > 0 of (4.8) will be called the "baseline" solution. Given one such

solution, a family of matrices Z > 0 satisfying (6.26), and hence a family of stabilizing state-

feedback control laws which guarantee the closed-loop bound IITIko < a, is characterized.
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Take X > 0 to be the baseline solution of (4.8). Given this fixed matrix X, define the

matrix Riccati function R by

R(M) = FTM + MF + -LMGGTM + (XBBTX + HTH), (6.27)
a2

where F = A - BBTX is Hurwitz. By Lemma 6.1, each symmetric solution of R(X,) = 0

satisfies Xi > 0. Let Z > 0 be any convex combination of solutions Xi of R(X,) = 0. By

Lemma 6.3,

R(Z) - FTZ + ZF + -ZGGTZ + (XBBTX + HTH) <0 . (6.28)
a2

To see that Z > 0 satisfies (6.26), rearrange (6.28) to obtain

ATZ + ZA + -LZGGTZ - ZBBTZ + HTH

< -ZBBTZ + ZBBTX + XBBTZ - XBBTX

= -(Z- X)BB T (Z- X) < 0.

The following theorem summarizes the characterization of a family of state-feedback Hoo

controls:

Theorem 6.3. Suppose F = A - BBTX, where X > 0 solves the state-feedback design

ARE (4.8). Let Z be any convex combination of solutions Xi of the ARE

F TXX GGTX, + (XBBTX + HTH) = 0. (6.29)

Then, Fz = A - BBTZ is Hurwitz, and the state-feedback control law

U = -BTZX

guarantees that

TO-) ( H )(sI - Fz)-'GT( = _BTZ

satisfies ITh00 < a.
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6.2.4 A family of output-feedback controls

The approach of Theorem 6.3 extends to the output-feedback case: Start with Z > 0 a

convex combination of solutions Xi of (6.29). Define
N1 = ATZ + ZA + I ZGGTZ - ZBBTZ + HTH. (6.30)

a 2

By Lemma 6.3, N1 <_ 0. The following theorem now gives a family of observers for each

state-feedback HO. control characterized by such a Z.

Theorem 6.4. Assume A + a- 2 GGTZ - BBTZ is Hurwitz. Let Y > 0 satisfy

AY + YAT + YHyHTHY - yCTCy + GGT = 0, (6.31)

with (A - yCTC) Hurwitz. Let V > 0 be any convex combination of solutions Y of

(A - ycTC)Y + Y(A - yCrC)T + ;Y (H H - NI)Y, + (yCTCy + GGT) =0 (6.32)

satisfying ua,.{VZ} < a 2, and define the observer gain L by

L = (I - a- 2 VZ)-VC T = (V- - 2 z C)-lCT. (6.33)

Then, the controller

S= (A+ 1 GGT Z - BBTZ - LC + Ly, (6.34a)

u = -BTZ , (6.34b)

stabilizes the plant (2.1), and provides the closed-loop HO.-norm bound IITIIko <a.

Proof. First note that, since N1 :_ 0, (HTH - N 1) > 0. By Lemma 6.3,

(A - YCTC)V + V(A - YeC)T +H - N 1 )V + (YC T CY + GGT) <0. (6.35)

Algebraic manipulations similar to those in the proof of Theorem 3.1 give

AV + VAT + -LVHTHV - VCTCV + GG T < 1VNIV. (6.36)
a 2  a12
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Pre- and post-multiply (6.36) by aV - ' to obtain

((&V - 1 ) + AT(a 2 V -1 ) + HTH - C2CTC + 1 a 2 V-')GGT (a 2V - 1 ) < N. (6.37)

Subtract (6.30) from (6.37) to obtain

(a2V -1 - Z)A + AT(a 2Vl - Z) - a2 CT C

1 2 T((2V-) T TZ: 0.(6.38)
+72(a VjGG a + ZBBTZ - ZGGTZ <0.

a2

Define

X, = (a 2V- 1 - Z) > 0, (6.39)

and rewrite (6.38) as

XA + TX 1 - Q2CTC + -k(x + Z)GGT(X 1 + Z) + ZBB Z - -!ZGGT Z <0 . (6.40)

Now define N 2 < 0 as the left-hand side of (6.40); rearranging terms, (6.40) becomes

N2 - X,(A + a-2GGTZ - LC) + (A + a-2GGTZ - LC)XI

+a 2CTC +-XGGTXI + ZBBTZ <0. (6.41)

With the controller (6.34), the closed-loop system transformed to error coordinates is de-

scribed by

Fe (A-BB TZ -~BBTZ '~ (G 0I H (
F, a- 2 GGTZ A + a-2GGTZ- LC),e -G L)e = _BTZ _BTZ •

Define

0 X, >0

and consider the quantity

X.F + FTX. +-1XG. GX +HT He. (6.42)

It can now be verified that the two off-diagonal blocks of (6.42) are identically zero, and that

the diagonal blocks give N1 and N2 , as defined in (6.30) and (6.41); therefore,

X. F + FT x. +1 X.G.GTX, + H.TH _ N, 0 50Xe~eE~T~ +~X~cGXe+HHe("1 ~<0.
1440 N2
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The proof of detectability of (F,, H,) is routine, and proceeds exactly as that in Section 4.4.

Therefore, by Lemma 4.1, F is Hurwitz, and T(s) = He(sI - F.)-1 G, satisfies IITIkoo _<

Recall that [48] and [47] give parameterizations of the set of all output-feedback controllers

guaranteeing the Hoo-norm bound a. Some of these controllers are of high order, and are

therefore undesirable. By contrast, Theorem 6.4 characterizes a family of controllers with

realizations all of the same order as the plant, which all guarantee the Ho,-norm bound a.

6.2.5 A family of decenwralized controls

A generalization of Theorem 6.4 to the decentralized case cannot be readily obtained.

Manipulations like those in the proof of Theorem 6.4 applied to the Riccati-like (decentral-

ized) design equation do not give the desired result. Therefore, while Theorem 6.4 gives a

family of observer designs for each state-feedback design, the next theorem gives only one

decentralized observer design for each state-feedback design of Theorem 6.3. The definitions

of Z and N1 assumed in the theorem statement are as in Section 6.2.4. For the remainder

of this section, every occurrence of X in (4.35) is replaced by Z.

Theorem 6.5. Assume A + a-2GGTZ - BBTZ is Hurwitz and A + a- 2GGT Z has no

jw-axis eigenvalues. Let W > 0 satisfy the Riccati-like algebraic equation

AW + WA T + 2 WXcBcBYXcW - WcTCwCW + GcG+ (W - WD)CTc(W - WD) = 0,

(6.43)

and compute Lc = Diag(LI, L 2 ,. . . , Lq) as

LC = WDC T . (6.44)

Then, the decentralized control law

j= (A+ -1GGTZ - BBTZ - LC) + Ljy, i E {1,2,. .. ,q}, (6.45a)
a2

ui BT - Z&, i E {1, 2,...,q}, (6.45b)
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stabilizes the plant (2.1), with decentralized control structure given by (4.26), and provides

the closed-loop Ho-norm bound IlTII,,. < a.

Proof. Using (6.44), rewrite (6.43) as

(Ac- LcC)W + W(Ac - LCC) + -cWXCBCB XoW + GcGc + LcL 0. (6.46)

Pre- and post-multiply (6.46) by aW - ' to obtain

( 2 W-)(Ac - LcCc) + (Ac - LcCc)(a 2W -1 ) + XCBCBTXc

1 (6.47)

+ L(aw-I )(GG T+ LL )(, 2W - 1 ) = 0.

With controllers (6.45), the closed-loop system is described by the matrices

F(A - BTZ -BBTZ, )G, G( 0 Hc~ e i J 'F c = -GGZ Ac - LcCc G -Gc Lc , , BTZ _.&TZc

(6.48)

where (6.48) differs from (4.36) only in that X has been replaced everywhere by Z. Define

0 a2W - )>

and consider the quantity

XF, + FTX + 1XGGX + HTH. (6.49)

The two off-diagonal blocks of (6.49) are identically zero. The upper-left block of (6.49) gives

N, defined in (6.30). The lower-right block is zero by (6.47). Therefore,

X.F, + FTXe + 1XeG.HTX, + HTH, =( N, O) 0.

By Lemma 4.2, (F,, He) is a detectable pair; therefore, by Lemma 4.1, the closed-loop system

is stable, and the closed-loop transfer-function matrix T(s) = H,(sI - F)- 1 G. satisfies

IITif. < a. 0

Similar to Theorem 6.4 in the centralized case, Theorem 6.5 gives a family of decen-

tralized control laws which guarantee a predetermined H.-norm bound for the closed-loop

system, and which are characterized by controllers of the same order as the plant. Unlike

the centralized case, the family of decentralized controls consists of only a single controller

associated with each member of a family of state-feedback controls.
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6.2.6 Conclusions

A convexity property of a certain matrix Riccati function is used to characterize families

of controllers which provide stability and H. disturbance attenuation. This characterization

has two significant advantages over those given [67], [48], and [47]: First, it includes families

of decentralized control laws. Second, it excludes controllers of high order. It is possible

that some controllers in the families developed here could have realizations of lower order

than that of the corresponding baseline controller; hence, a criterion for choosing among the

controllers could be the order of their minimal realizations. How to choose from the family

a controller with a lower-oider minimal realization is a problem for future research.

6.3 H-Infinity Control in Discrete Time

In this section we develop state-feedback control laws that provide disturbance attenua-

tion with a uniform Hoo-norm bound for discrete systems using state-feedback and output-

feedback controls and also discuss methods of computing Ho, norms of discrete-time systems.

For completeness, we include known results regarding H,,-norm bounds of discrete-time sys-

tems and results on characterizing state-feedback control laws that guarantee certain H..

norm bounds.

6.3.1 Preliminary results

We consider the system

Xk+,= Axk + Buk + Gwk (6.50a)

k =[Hzk (6.50b)

where u is the control input, C is the regulated output and w is a square-summable dis-

turbance input. We also make the assumption that A is invertible, and that the triple

[A, B, H] is stabilizable and detectable. Our development will make constant reference to

the discrete-time algebraic Riccati equation (DARE) of the general form

P = R, + ATp(I + R 2P)-A (6.51)
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where, in general, R, and R2 are symmetric but not necessarily sign-definite, as opposed to

LQ control with R1  0 and R2 > 0. We associate with this equation, the symplectic matrix

[ A + R 2A-TR, -R 2 A - T 1
$ _A- TR, A-T •

The following Lemma relates the stabilizing solution of (6.51) with the eigenvalues of $ [69].

Lemma 6.4. If $ has no eigenvalues on the unit circle and [A, R2] is stabilizable, then

equation (6.51) has a unique stabilizing solution P (i.e., such that the spectrum of A -

R2 A-T(P - R 1) lies in the open unit disk.) 0

The results developed here are directly related to that of finding a controller that achieves

desired disturbance attenuation for the discrete system (6.50). This problem can be posed

as one of choosing a control strategy that minimizes cost functional

J(u) =sup f!L : w E 2,w #40k (6.52)

Alternatively, we may define the cost functional

V = I1111 - 721W112

Then V < 0 for all w E 12, if and only if IIT(z)IkOO < y, where T(z) the transfer function from

w to C. In this case, we say that the system has a disturbance attenuation of -f. It has been

shown in [40] that the minimizing control is a linear function of the state. We may therefore

restrict consideration to linear closed-loop systems. The functional (6.52) is then equivalent

to the Ho, norm of the system, and we may, therefore, formulate the optimal disturbance

rejection problem as follows: Determine the stabilizing state-feedback control u = I,,"x

such that for all stabilizing K

JlTmll. :5 <IT,11.

where

Tmin(Z) =[ ](zI - A - BI n)'G, T(Z) W]( - A - BK)G.
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Note that the H,, norm is considered here to be the "sup norm" of essentially bounded

functions on the unit circle with analytic extension to the region outside the unit disk.

The next result identifies conditions under which this may be accomplished using state

feedback [40].

Theorem 6.6. Suppose that the triple [A, B, H] is stabilizable. and detectable, and that

there exists a stabilizing solution P of

P = HTH + ATp I + (BBT - 1!2GGT)p A (6.53)

with -y > 0 and the side condition

21 - CTPG > 0. (6.54)

Then the control u = Kx, with

K = -BTP I + (BBT _ 12GGT)P A (6.55)

guarantees that

a)the matrix (A + BK) is stable,

b)the matrix [A + (BBT - GGT)A-T(P - HTH)] is stable, and

c) IITII" < f, where T,(z) = [ H ](zI - A - BK)-G.

0

A related result is found in [70]. In the setting of "perfect information," used in [70],

however, the control was allowed to depend on both the state and the disturbance. The

disturbance, however, is generally not known.

The results of [40] show that the optimal solution to the disturbance-attenuation problem

exists as a state-feedback control. That is, consider a decreasing sequence {i, i E A'} such

that for each -y, conditions (6.53) and (6.54) hold. This sequence, being bounded away from

149



zero, will have a limit, which we call Ym,. The controller gain K given in (6.55) also has a

limit [40], Kmi(, and we have

7mm. = tITminlic, (6.56)

where

T,!n(Z)=[ K h ] (zI - A - BK mi )-1 G. (6.57)

In the sequel, 7rain will denote the minimal achievable H.,-norm bound using state feedback.

The following Lemma, which is very similar to the previous result, is useful in designing

suboptimal Hob-norm-bounding controllers.

Lemma 6.5. Suppose [E, HI is detectable and for some -y > 0, 6 > 0, and P > 0 we have

P > 1HTH + Ep I - GGP) E (6.58)

y 2I - GT PG > 0. (6.59)

Then for T(z) = H(zI - E)-'G

a)E is stable, and

b)ITII. < -y6.

Proof For completeness we prove this result; it follows in spirit the continuous case and the

case where (6.58) is an equality.

a) Condition (6.58) implies that there exists N < 0 such that

N= 1 HTH + ETPE _ P + MTS-lM (6.60)

where M = GTPE, and S = y2I-GTPG. Using condition (6.59), the fact that P > 0,

and the detectability of (E, H), we verify the stability of E by standard results on the

discrete Lyapunov equation.

b) Let
Xk+1 = Exk + Gwk, X0 = O,w E 12 (6.61)
(k = HXk.
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Define
16 2-

v5  7 2-1(I2 - 7211 w2 (6.62)

We are done if we can show that V6 _ 0 for all w E 12, since this will imply that

I1 11 - 2652 < IIwI1l 2 0 (6.63)

for all w E 12, thus giving the attenuation bound. Since E is stable, and x, = 0
00

xroPx0  = - ,(x+Pk+ - 47 Pxk) = 0; (6.64)
k=O

thus, using (6.64)

V8 = V8-xroPxo

-6 ZVC'k 6 1 x -X0z

E (Hxk)T(HXk) k- /'Wwk + (Exk + Gwk)TP(Exk + Gwk) - 4PXk

00 XT {!HH + ETPE - }~-WTI{ 2 I - GTPG}wk + 2WGT PEXk
k0

= - MTS-M1M}Xk -w{S}wk + 2wr Mzk
k=O

by (6.58). Let w; = S-MXk, introduce wo = Wk - w; and note that

wkswk = [Wk - w,]Ts Wok - w,] + 2wrsw, - wkTsw r

= Wk"TSW 2WSW; - wkTSw*.

Then V becomes

00

V6 = .NJ k - {w k*TSw * + 2wTSw, - wkTSw } + XTMw + 2XTMTWk
k=O

00

= x Nxk - Wk*TSWk + 2wT(MXk - Sw;) - wT(Mxk - Sw*)
k=O

00

= Nxk - wk Swk < 0
k=O
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for all w E 12, since w; = S-MXk, N < 0 and S > 0. 3

Thus, if we can find any P > 0 that satisfies the conditions of Lemma 6.5, then the

stability of the system is guaranteed, and the uniform Hoo-norm bound holds. If instead of

the inequality we have equality, then for b = 1 we have the discrete equivalent of [71]:

Corollary 6.1. Suppose [E, HI is detectable and for some P 2! 0 and y > 0 we have

i)

P=HTH+ETp (I- 1GGTp E

ii)

7
21 - GT PG > 0.

Then for T(z) = H(zI- E)-'G

a) E is stable, and

b)llTII,. < 7

0

Remark 6.1. If P > 0 then we can remove the detectability condition.

Corollary 6.1 provides an iterative means of computing a tight upper bound on the HO,

norm, with each successive iteration providing a better estimate of the actual value. To

determine the Ho. norm, we choose -y > 0, and then test to see if the conditions of Corollary

6.1 are met. This procedure is then repeated with a lower value of y to find a new upper

bound. Determining the actual H.. norm involves a search for -y, where

No=!inf {>0:3p>0suchthatP=HTH+ETp (-LGGTp E > 0

andl2I - GTPG > 0}

so that

IITIko. = Iii(zI - E)-GII = 7y.
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This is fully analogous to the algorithms proposed for the continuous case [71]. A more effi-

cient algorithm for computing the H,, norm in the discrete case is described in Section 6.3.4.

We also note for future reference the following two well known facts.

Lemma 6.6. If E is stable and P = ETPE + S, for some S _ 0, then P > 0.

Proof Since E is stable then we can write P = E? 0 (ET)kSEk > 0. 0

Lemma 6.7. If (A, H) is detectable, then for any gain K, (E, R) is detectable, where

E = A + BK, and - = [HT KT]T.

Proof Let A be an eigenvalue of E corresponding to an unobservable mode of (E, H); that

is, there exists a vector v k 0 such that

Ev =Av (6.65a)

and

Hv =0. (6.65b)

The proof consists in showing that J1 < 1. Equation (6.65b) implies that Hv = 0, and

Kv = 0, which in turn implies that Ev = (A + BK)v = Av = Av, and thus corresponds to

an unobservable mode of (A, H). Since (A, H) is detectable, IAI < 1. 3

Thus, detectability is not lost under the proposed state-feedback structure and augmented

output matrix.

6.3.2 Properties of Riccati operators

We now introduce a discrete-time Riccati operator, analogous to that for the continuous

problem introduced in [101, establish its convexity properties, and proceed to find a set of

state-feedback laws that guarantee H.-norm bounds. The general approach is based on the

discrete Algebraic Riccati inequality (DARI) of Lemma 6.5.

For a fixed, positive scalar y, and matrices E, G, H, and A, we introduce over the field

S = {X E Rn x n : X = XT} the two domains

Si = {X E S: (721 - GTXG) - exists} (6.66)
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Sp = {X E S: (-' 2 1 -GTXG) > 0}, (6.67)

and define the operators DR: S1 --+ S, and R: S --* S where

DR(X) = -ITf - X + ETX I - 12 GG TX E

(6.68)

= IT-I-jX+ET I- XGG T XE

and
R(X) H TH-X+ ATX [I + (BB T

_ 1 GGT X A. (6.69)

Note that when U = GGT, E = F, and I - [HTKIl, where

KS = -BTX. [I + (BBT - 1GGT) X.] A, (6.70)

F. = A+ BK., (6.71)

and X, is the stabilizing solution of R(X) = 0, then

DR(X) = HTH + g4K. + FTX(I - UX)-'Fo - X (6.72)

R(X) = HT H + KT K= + FIX(I - UX)- F- X (6.73)

where

K., = -B TX [I+ (BB T _ 1 GGT) X] A (6.74)

F= A+ BK,. (6.75)

Note also that if R(X) = 0 then X solves equation (6.53), and similarly, for this choice of E

and ft, DR(X,)= R(X.).

We first explore general properties of the t% a Riccati operators and then proceed to define

and demostrate a convexity property of the Riccati operator DR(X). The first property

relates to the monotonicity of the stabilizing solution of the Riccati equation R(P) = 0 with

respect to -t. The next three properties relate to the solutions of DR(M) = 0.

As usual, given X(-y) E Rnxrn, the matrix 4- is defined if all the partials exist.
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Theorem 6.7. If -y > 7rin and P is the stabilizing solution of

P=HT H+ATp [I+ BB T - GGT)p] A,

then exists and is a negative semidefinite matrix.

Proof Let -y = 7 + f for - > 0, where without loss of generality we can let t be small enough

that -y2 = -y - f > -fn. Let a, = 1/72 and a 2 = 1/-f2. and let P, and P2 be the stabilizing

solutions of
F1 = HH + ATpIP4 + (BBT - aIGGT)Pi]-lA

P 2 = HTH + ATp 2[I + (BBT - a2GGT)P2]-lA.

Then

AP=PI-P 2

= AT{p [I + (BBT - ajGGT)p]- - [I + P2(BB r - a2GGT)]-P 2 }A

= AT[I + P2 (BBT - a 2GGT) - 1 {[I + P2(BBT - a2 GGT)]Pi - P2[I + (BBT - aiGGT)PI]}

x[I + (BBT - aGG)Pi-lA

= ETAPEI + AaDTDI

where Zia = a, - a2 , Ei = [I + (BBT - acGGT)pi]-1 A, Di = GTE., for i = 1,2. Thus

AP = ET "p)E+DTDi

Taking the limit as e - 0, we have P1 -+ P, P 2 -- P, E, -- E, E 2 --- E, D, - D and

D2 --- D; therefore,
a' = E E+DTD.

But by Theorem 6.6, E is stable and so by Lemma 6.6, i > 0 and thus

-' aPda - (P 2 0.

Remark 6.2: Theorem 6.7 tells us that if 7,j > 72 > -m.., then P(-T1 ) - P(7-2y) _P(7 ).

This result could be strengthened to strict monotonicity if controllability conditions are

imposed.
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Remark 6.3: If P is chosen as the anti-stabilizing solution, i.e., E-1 is stable, then P(-y) is

monotonically increasing, i.e., for '-y > 7Y2 > -yra, then P(7l) - P(7Y2) -> P(TmW,).

Lemma 6.8. If E is a stability matrix, M E Sp and DR(M)= 0, then M > 0.

Proof Suppose DR(M) = 0 i.e.,

DR(M) = HTH - M + ETME + ETMG(_12 I - GTMG)-IGTME = 0;

thus,

ETME - M = -HTH - ETMG(_121 - GTMG)-lGTME < 0.

Since E is a stability matrix, then by Lemma 6.6, M > 0. 0

Theorem 6.8. Suppose M, and M. are the "stabilizing" And "anti-stabilizing" solutions of

DR(M) = 0. If M is any other matrix with DR(M) = 0, then

M1<_M<5M..

Proof M, is the stabilizing solution if F =1 - 1-2GG M) E has p(Fo.) < 1. Under

this condition, we have

ETM, (I - GGTM,) E = FT (I - !MGGT) M. Fo..

Introduce again U = GGT; then

DR(M.) = 0 = HT H + FT M.Fo - M.- FT M.UM.F. (6.76)

Note also that the expression below can be manipulated as follows:
ETM(I - UM)TE- FTMFo,

= ET {(M(I - UM)- 1 - (I - MU)-'M(I - UM) - '} E

= ET(I - MU)-1 {(I - M.U)M(I - UM)-'(I - UM.) - M}(I- UM.)-1 E

= ET(I - MU) - ' {(M - MoUM. + (M - M.)G('12 - GTMG)- 1

GT(M - M.) - M)} (I - UMo)-E
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and so

E TM(I - UM)-'E - FTMFOI.
Os (6.77)

-FZ {(M - M)(y - GT MG)l'GT(M _ M.) - M.UM3 } F0..

Thus, since M is a solution, we have in analogy with (6.76), and using (6.77)

DR(M) = 0 = HTH + ETM(I - UM)- 1 E - M

= HTH + FT,,MF 3, - M + ETM(I - UM)-'E - FLMFO.s

= HTH + FMF8 . -M - MUMF..
FLM- M.)G(-f1 - GT MG)-.lGT(M _ IVI,)F 8

= DR(M.) + F0 (M - M.)FOI + M - M
+F0

2 (M - M.)G(-t2 - GT MG)rIGT(M _ M.)FO.,

and so

0 = DR(M) - DR(M.)

= F0L(M - M)F- (M -MS)
+LM- M.)G(1 - GTMG)I'GT( JF

Since F,,, is stable, and F0
2(M - M.)FOI - (M - M,) : 0, Lemma 6.6 gives M - Ms 0 or

M, < M. Similarly, for the upper bound, we can write, (with p(FZ1 ) < 1)

DR(M.) = HTH+FLM.F,. FO2 MGUM.IF.

DR(M) = HTH+FLMFa-M-FMaUM.F...
+FL(M.- M)G(-t 21 - G TMGV.I GT(MAf _ M)Foa.

and so

0 = DR(M) - DR(M.)

= (M-M)-F (M - M)F 4 + F0T(Ma -M)GQ9 IjGTMG)'G T(MN _M)F,,..

Premultiplying by F,,-, postmultiplying by F,,ja and rearranging gives

F"-T(Ma _ M)F.-1  (M. - M) = -(M,, - M)G(-y 2I -G GTMG)-. 1 GT(M - M) ! 0.

Since F.-. is stable, then Ma > M. 0
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Theorem 6.9. If M E S1 , (E,H) is detectable, and DR(M) = 0, then M E Sp (i.e.,

121 - GTMG > 0).

Proof Suppose M > HTH, and let W = E-T{M - HTHEI > 0. Thus

DR(M) = 0 = -ETWE + ETM[I - UMI-'E

which implies that M[I - UM] - ' >_ 0. But

M[I - UM]- ' = [I - MU]-M 11 2 {(I- MI/ 2UMl/2)MI/ 2 [I UM]-I

which is positive semidefinite if

92(1 - M1I2UM 1/ 2) > 0.

This is equivalent to
21 - GTMG > 0.

But since M E Si, then (9I - GTMG) has no zero eigenvalues, and so 721 - GTMG > 0.

We now show that M > HTH. Since (E, H) is a detectable pair, then there exists M > 0

such that

= HTH+ETMffE

which implies that > HTH. Note also that as 7 "* oo in DR(M) = 0, that M(7) -- M.

Recall also that -1. is the infimal number such that for all 7Y E (-y,, oo) there exist real

solutions of DR(M) = 0. By Theorem 6.7, M8 (97) is monot -fiically decreasing for -f E

(Y, oo), and so

Ms() M.(oo) = > H T H > 0.

By Theorem 6.8, we verify that M,( 7 ) > M(7) > M(-,) > HTH. 0

Definition 6.1. A set A is called convex if and only if xj, X2 E A, and a E [0,11, implies

that ax, + (1 - Q)X 2 E A.

Note that St is not a convex set, but S, is convex.
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Definition 6.2. Suppotse f : J " --+ JR x , f(x) = f(x)T, for all x on A, which is a

convex set, then f is convex on A if and only if for all X1,X2 E A, and a E [0, 1],

(axI + (1 - a)x2) :_ af(xI) + (1 - a)f(x2) (6.78)

where "<" is defined in the sign-definite sense.

Theorem 6.10. DR is; convex on Sp.

The proof of this property will require a few preliminary results on DR and its Fr6chet

differential [72]. The fi'rst. Fr6chet differential 6DR(x; A) exists on St and is given in the

following Lemma.

Lemma 6.9. 6DR(x; A) = -A + ET[I - xU]-'A[I - Ux]-E on St, where U = -GGT.

Proof We must show that for x an interior point of St, and for A such that x + A belongs

to a neighborhood of x in SI, that

lim [IDR(x + A) - DR(x) - tDR(x;A)II =0. (6.79)

1AI1-o IIAII

We may, without loss of generality, restrict A such that for some 0 < M1 <co

lilt - (X + A)u]-1 __ M II [I - xU]- 1 l•  (6.80)

Let M 2 = IIE1I211[I - Ux-I'113 11UII. We now have

DR(x + A) - DR(x) - DR(x; A)

= ET {(X + A)[I - U(x + A)]- - [I - xUV]-'x} E - ET[I- XU]-A[I - Ux]-'E

= ET[I - xU]-' {(I - xU)(x + A) - x(I - U(x + A))} [I - U(x + A)]-'E
-ET[f - xU]-'A[I - UxI-'E

= ET[I - xU]-'A {[I - U(x + A)]-, - [I - Ux]-'} E

= ET[I - xUIA[I - U(x + A)]-'UA[I - Uxl-'E.

Thus

IDR(z + A)- DR(x)- bDR(x;A)II < MIjjEI211[I - Ux]-111311UIIIIAI12

= MM 211A11 2
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and so we readily see that

lim IIDR(x + A) - DR(x) - 6DR(z; A)][ < lim MIM211A[ =0. (6.81)I&I0IIAiI 111.

Remark 6.4: Note that 6DR(x; A) is linear in A; that is, for a scalar a, 6DR(x; aA) =

abDR(x; A), and also 6DR(x; A 1 + dA 2) = 6DR(x; A,) + 6DR(x; dA 2 ).

Remark 6.5: Since bDR(x; A) exists, it can also be shown to equal

bDR(x; A) = lim DR(x + aA) - DR(z)

So, not only does the first Frdchet differential exist for DR on SI, but actually the Taylor

series may be found. Remark 6.4 demonstrates that the derivative can be considered as a

linear operator on its domain [73]. We may thus write 6DR(z; A) as DRZ(A).

Although the convexity considered in this section is in the sign-definite sense, rather

than element-wise, the following result is established in the same way as for scalar convex

functions of a vector variable. The proof given here is a generalization of that given in [74]

and relates convexity with the first Fr6chet differential.

Lemma 6.10. DR is convex on Sp iff for all X, Y E Sp

DR(Y) - DR(X) _ DR,(Y - X). (6.82)

Proof Suppose DR is convex on Sp. Then for all a E [0, 11 and X, Y E Sp

DR(aY - (1 - a)X)) _ aDR(Y) + (1 - a)DR(X).

Now for a E (0, 1], we have

DR(X + a(Y - X) - DR(X) < DR(Y) - DR(X).

a

Letting a --* 0 we obtain (6.82), by Remark 6.5.
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Now let X,Y E Sp, and a E (0 11, and let 7 - X + (1 -a)Y. Then Z E Sp and

DR(X) _ DR(Z) + DRZ(X - Z) (6.83)

DR(Y) _ DR(Z) + DRZ(Y - Z). (6.84)

Multiplying (6.83) by a and (6.84) by (1 - a) and adding gives

aDR(X) + (1- a)DR(Y) > DR(Z) + aDR,(X - Z) + (1 - a)DR.(Y - Z). (6.85)

By the definition of Z and Remark 6.4,

aDR.(X - Z) + (1 - a)DR.(Y - Z) = DRz[a(X - Z)] + (1 - a)DR,(Y - Z)

= DR.[(1 - a)(Z - Y)] + (1 - a)DR.(Y - Z)

= -(1 - a)DR.(Y - Z) + (1 - a)DR.(Y - Z)
-- 0.

Substituting Z = aX + (1 - a)Y into (6.85), then gives

aDR(X) + (1 - a)DR(Y) >_ DR(aX + (1 - a)Y)

and so DR(X) is convex.

03

Proof of Theorem 6.10- Based on Lemma 6.10, DR is convex on Sp if for all X, Y E Sp,

DR(Y) - DR(X) >_ DRZ(Y - X)

so this is what is proved. Let X, Y E Sp; then

DR(Y) - DR(X) = -(Y - X) + ET{y(I- UY)- - X(I - UX)-}E.

Now

(I - XU)Y(I - UY)-'(I - UX) = (I - XU)Y[I + (I - UY)-'U(Y - X)]

= (I - XU)Y + [I + (Y - X)U(I - YU)-]YU(Y - X)

= Y - XUY + YU(Y - X) + (Y - X)U(I - YU)-'YU(Y - X).
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Thus

Y(I - UY)-I - X(I - UX)-i

= (I - XU)-' {(I - XU)Y(I - UY)-1 (I - UX) - (I - XU)X}(I - UX)-i

= (I - XU)- 1 {(Y - X) + (Y - X)U(Y - X)

+(Y - X)U(I - YU)- 1 YU(Y - X)}(I- UX) - i

- (I{- - X) + (Y - X)U(I - YU)- - X)}(I- UX)

and so
DR(Y) - DR(X) = -(Y - X)

+ET(I - XU) - I 1(y _ X) + (Y - X)U(I - YU)-l(Y- X)(- UX)-1 E.

On the other hand

DR,(Y - X) = -(Y - X) + ET(I - XU)-I(Y - X)(I - UX)-'E.

Subtracting gives

DR(Y) - DR(X) - DR.(Y - X)
E3

- ET(I - XU)-1 (Y - X)G(9'1 - GTYG)-GT(Y - X)(I - UX)-'E > 0.
The next Corollary, states the convexity property in terms of a convex combination of ele-
ment!- ;n SP.

Corollary 6.2. If Xi E Sp for i = 1,2,...,q, andfij > 0 with #I +... + flq = 1, then

DR ( .Xi) PZPR(Xi). (6.86)
i=11

0

We next define the admissible set of candidate feedback solutions. To this end let

S ={X= iXi: Xi ESjDR(X,)=0O, ,>0, E =1 (6.87)
"=1 i= iI

where DR(.) is the operator (6.68) with E = F = A + BA, ftT = [HTKT]T, and K, is

given by (6.55), and formed from the stabilizing solution of the Riccati equation (6.53). Note

that based on Lemma 6.8 and Theorems 6.8 to 6.10 it follows that Sp C S-,. Note also that

Xo the stabilizing solution of DR(X) = 0, is the "least" element of S., (i.e., X, < X for all

XE 5,).
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Lemma 6.11. If X E S,, then DR(X) < 0.
q

Proof Recall that X = - DiXi, withfh F+... +lq =1. Thus by Corollary 6.2,
i=1

DR(X) < ~R~ =O.

Lemma 6.12. If X E S, then R(X) < 0.

Proof By Lemma 6.11. 0 > DR(X), and so we only need to show that DR(X) _ R(X).

We have

DR(X) - R(X) = KTK, - KTK= + FTX[I - UX]-IFo - FTX[I - UX]-'F=
(6.88)

= T(X,X.).

Let

M(X) = X -1 + BB T - U, (6.89)

N(X) = M(X) - BBT. (6.90)

Note that N(X) > 0, M(X) > 0. Then

K gZ + FTX[I - UX]-F, = ATM(X)-' A (6.91)

and similarly

gTK. + FTX[I - UX]-IF. = ATM(X)-{BBT + N(X.)N(X)-N(X.}M(X,)-'A. (6.92)

So based on (6.91), (6.92), with M(x), N(x) defined by (6.89), (6.90) we find that

T(X,X.) = AT{M(X.)-l[BBT + N(X.)N(X)-N(Xo)]M(X.) - ' - M(X)-'}A

= ATM(X°)-{BBT + N(X,)N(X)- 1 N(X.) - M(X.)M(X)-M(X.)}M(X.)-A

= ATM(X.)-{Q(X, X°}M(X.)-A
(6.93)

with

Q(X,X,) = BBT + N(X.)N(X)-'N(X.) - M(X.)M(X)-M(X.)

= BBT + N(X.)N(X) - N(X.) - [BBT + N(X,)][BB T + N(X)]-[BBT + N(X4)].
(6.94)
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Note that Q(X, X.) is a Schur complement of the block E22 of the matrix E defined as

[ BB + N(X.)N(X)-'N(X.) BBT + N(X.)1
= BB + N(X.) BBT + N(X) ] (6.95)

Now, since (6.95) can be decomposed as

[ ] [BBT B T +[ (N(X)f(X l ] N(X)[N(X)-'N(X.) I1] (6.96)

it follows from E > 0 that Q(X, X°) > 0, which implies that T(X, X.) >_ 0, and so DR(X) -

R(X) > 0 and thus 0 > DR(X) > R(X). 13

6.3.3 Norm-bounding state-feedback control strategies

In this section, we discuss feedback controls that guarantee upper and lower bounds on the

H,, norm of the system. The first Theorem presents the new lower bound on the optimum

H,, norm achievable for a given system using state-feedback controls. For completeness, the

statement of the Theorem includes the known upper bound on the Ho, norm of a system.

Theorem 6.11. If there exist P. > 0 and a positive scalar -t such that

T Tp _ -GG T) -.

P=HT H+ATp [I + (BBT - GGTP I A (6.97a)

7.I - GT P oG > 0 (6.97b)

then the control u = Kx, with K = -BT p[I + (BBT - 2 GGT)po]-A guarantees that
It

A...(GTPoG) < ITcII < T'(z) = [ H ](zI - A - BK)- 'G (6.97c)

and moreover

A,,.(G T PoG) 00IITmII <y%. (6.97d)

Proof

a) The upper bounds are proved in Theorem 6.6, with the upper bound in (6.97d) following

from the one in (6.97c) and the fact that Twai(z) has a lower HO,-norm bound than

that given by any other state-feedback control.
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b) To show that the lower bounds hold, let E = A + BK and Ho [ with

K = -B r Po[I + (BBT - !oGGT)Po]-0 A. (6.98)

Then (E, Ho) is a detectable pair (Lemma 6.8). Define

= inff-t > 0 : 3 such thatP = HTHo + ETp(I - i-GGTp)-IE, -12- GTPG> 0}
= IIHo(zI - E)-'GiII =1T II1.

and so the lower bound in (6.97b) is shown if we show that

2I > GTP(70 )G. (6.99)

Note that when P = Po and -f = -to then (6.97a) can be rewritten as

P = HoH + ET (1 - 72GGT p) E (6.100)

and since t2,I - GTp(7yo)G > 0, we have that -yo > yw and also that -to > t10 by the
definitions of y~j and 7°o. Thus, by Theorem 6.7, we have P(-y.o) >- P(-f0 ) and hence we

have -y'oI > GTp(7°o0)G >_ GTp(yo)G.

As for the second lower bound, we have, by Remark 62, that P(ymln) > P(-yo), and so
by the definition of Inin, 2In >_ GTP(Q-fn)G > GTP(-)G. 0

We are now in a position to form an entire class of Hoo-norm-bounding state-feedback

laws, for the system (6.50).

Theorem 6.12. For -y > rain, if X E S., then the control law u I = Kxk, with K. =

-BTX + (BBT - GGT) X] A guarantees that

a) A + BK., is stable, and

b) A (GTXG) <_ IlT.1. < 7 where

T:(z) [H ](zi - A - BK )-'G .
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Proof By Lemma 6.12, R(X) <_ 0, and by Theorem 6.9, -71 - GTXG > 0. With E =

A + BK and H replaced with ft = [HT KT]T then by Lemma 6.7, (E, f) is detectable and

so Lemma 6.7 gives the upper bound.

The proof of the lower bound uses Theorem 6.8 since X.(-y), the stabilizing solution of

R(X) = 0, with -y specified by in Theorem 6.12, satisfies A > Xo(7I). With E and A so

fixed, we consider the Riccati equation

p = fITf + ETp[I - UP]-E (6.101)

and define

71 = inf{(-y > 0: P the stabilizing solution of (6.101) with 721 - GTPG > 0}.

Since P.(7 ) is monotonically decreasing in -, then P(7,) > X(-y) and so -y2I >

GTP.(,)G >_ GTX.(7 )G, thus giving

2IITI - 7=2 > Am.A.f{(GTX.G}. 0

6.3.4 Computing Ho-norm bounds for linear systems

Various methods have been proposed for finding either the Ho, norm of a system, or

bounds on its value. We review available lower and upper bounds and then, by appropriate

modification of the result in the previous section, derive a new lower bound.

A straightforward means of computing a lower bound is simply by choosing q, E [0, 2p],

i = 1,2,... ,NI, and computing

IITIk. >_ -tN (6.102)

where

7N = max A /2{T(e-J9 )TT(eJG)}. (6.103)I<i<N,'

Using this method, we would expect to obtain a better approximation of the actual value

as we increase NI. Essentially, we have a search, but there is generally no clear means of

obtaining a good estimate without computing a large number of values.

166



A simple lower bound on the H. norm is the 12 norm of the system, since the H2 norm

must be less than or equal to the H, norm for all inputs. It can thus be shown that

IITII] = trace (HLCH T ) = trace (G T LoG) _ IlTikw (6.104)

where L, and L, are the controllability and observability grammians

LC= ELcET + GGT (6.105a)

L = ET LoE + HT H. (6.105b)

This lower bound requires the solution of only one Lyapunov equation.

The Hankel (semi-) norm, which has proven to be useful in the approximation of high-

order systems by low-order systems, may also be used. Given any LTI system we can consider

the Hankel singular values ao, i = 1,... ,n, which may be shown to be

= A,(LoL),i = 1,...,n. (6.106)

It has been shown [75], [20], that

IITIIH = am(T) !5 IITIk1 _< 2-ao(T). (6.107)
i=1

This gives a quick means of obtaining both upper and lower bounds on the Hoo norm. The

computation of these bounds requires the solution of two Lyapunov equations. It can be

shown that JITh 2 5 IITIIH, and so the Hankel singular values give a tighter lower bound than

the 12 norm.

The disadvantage of the last two bounds is that they are not always tight. In the discrete

case we can establish a lower bound for IITIk,, and thus a interval within which the Hoo norm

of the system must lie. The following Lemma presents the new lower bound, together with

the known upper bound on the H,, norm.

Lemma 6.13. Let E be a stability matrix, and T(z) = H(z I- E)-1 G. If there exists P > 0

and a positive scalar -y such that

P = HTH + ETp I - 1 2 GGTp E (6.108)
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and
721 - GT PG > 0. (6.109)

Then

A!A(GTPG) < jIT <00 (6.110)

Proof. The upper bound is proved in Theorem 6.6. To show the lower bound, note that since

7 = IIH(zI - E)-'GII.

= inf{7 > 0 : 3p > such that P = HT H+ ETp I - 12 rp E > 0,. I - GTPG > 0}

then by Theorem 6.7 (which holds in particular for B = 0), P(7 1 ) >_ P(7), and thus we have

7-2I > GTp(7 )G > GTP(70 )G. 0

We can now give an algorithm for computing He, norm. This algorithm requires a given

upper bound 7 u and a lower bound 7 . We can set 7 = 0 with -fu a large number, or else

select both bounds from (6.107).

Algorithm:

(1) Given E, G, H, 7t, 7u. Let 7' = -y', and 7- = 71, 7i " (7t + 71).

(2) Compute Pi (eqn. (6.108)), the stabilizing solution (if possible).

(3) If either:

a) ne stabilizing solution exists or

b) (7I - GTPG) is not positive definite

t- en let 7i = 7i, and 7tiu+ 7; otherwise let 74, = max{A'(G T PG),7 !}, and

74+1 = 7i.

(4) Let 7yi+ = (7i+1 + 7-ui+).

(5) If I7y+l - 7-I -< f, a specified accuracy level then stop with IITII' , 7i+i(±") otherwise

increment i and 7 to (2). 0
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6.3.5 Examples

In this section we consider two examples. The first is related to the computation of the

optimal H- norm-bounding state-feedback approach. The second relates to the computation

of the HO, norm of a given system.

For the computation of the optimal state feedback consider the scalar system

Zk+1 = aXk + buk + GWk (6.111)
C = hzk

and also consider the DARE

a 2p

p h± +1 + (b! -g 2 /-t 2)P (6112)

Various phenomena can be illustrated with this system regarding the norm bounds discussed

above. It is also possible to understand when the norm bounds are tight. The conditions

necessary for obtaining the bounds are:

i) P is the stabilizing solution of (6.112), and

ii) _j2 - g2p > 0 (the "convexity" condition).

Under these conditions, there exists a state feedback that guarantees an Ho"-norm bound

less than -. This example will demonstrate that as 7 is decreased, that either conditiop, (i),

or (ii) might be the first to fail, thus stopping the search for the minimizer.

Solving (6.112) for -2 gives

72 g 2 P(P - h 2 )
b2p 2 - (b2h 2 + a2 - )P - h(6.113)

Example 1: Let a = b = g = h = 1/2. Graphs of the relationship between P and 7y2 are

shown in Figure 6.1. The figure shows both solutions to the Riccati equation when they exist.

In this figure, we show a trial value t, , and the lower bound obtained from the computation

of P( 7 '1 ), i.e., g2 P,.

For this system, the stabilizability condition defines the minimizer P,,r, = 1/2, for which
'2 = 1/5. This occurs at the local minimum of equation (6.113). For the corresponding
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Figure 6.1: Unit circle eigenvalues constraining condition.

K., = -1/4, we have E = A + BK,i. = 3/8, stable. The H, norm of the closed-loop

system is
h (zI (h2 + K2,)g2  1

g,, = (1 - IEI) 2  =

Note also that - 2P = (1/8)2 < IIT.1 .l and so the lower bound is not tight for this system.

Example 2: a = 1/2, b = g = h = 1. A graph of -2 versus P is given in Figure 6.2. The

state feedback that gives the minimal achievable H. norm is Ki = -1/2, which gives the

Ho norm IITmin 00 = 5/4. Note that in this example the admissible minimum (P = 2), of

equation (6.70) is on the boundary of the "convexity" region. Thus, the lirr'iting condition

here is the convexity condition. In this example, the lower bound is seen to be tight, since

for -2 = 5/4, P = 5/4 = -'2Pm1., thus -y2 P, = IITin l0 - Y2. It can also be seen that at the

minimum, A, = 2/5, Ki = -1/2, and E = 0.
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Figure 6.2: Convexity constraining condition.

Suppose that nowv we wish to compute the H, norm of the stable system

Xk+1 = Exk + gwk (6.115)

Ck = HXk

using the DARE
P=HTH±E 2p

P= TH 4- E2p(6.116)1 - g2/Py 2P

which can be rewritten explicitly in terms of P:

72 =g2 P(P- HTH) (6.117)
(1 - E2)P - HTH"

Example 3: Figure 6.3 shows the graph of 72 versus P for the case of E = 3/8, g = 1/2,

H = [1,/2 - 1/41r .

Note that the lower bound g2P is not tight. Indeed, it can be shown that for any -y, the

difference between the lower bound (computed for f) and the H.,, norm satisfies

IT2 -- L.B.(y) 2 = 2  g2HTHIEI (6118)

- = (1 - IJE)2(
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Figure 6.3: Computing the norm of a stable system.

Thus, we see that for the H,,o-optimal state feedback control problem, the convexity

condition or the stabilizability condition could be active. In the case of the Ho, norm calcu-

lation, however, the limiting case is always the stabilizability condition. These conclusions

carry over to higher-order systems.

6.3.6 The observer-based Hoo-norm-bounding control

In this section we present the solution of the observer-based Hoo-norm-bounding problem

when only certain output measurements are available to implement the control. The main

results are stated in this subsection and proved in subsection 6.3.7. The results we present

parallel those available for the continuous-time problem, but are established using a novel

transformation of the the discrete algebraic Riccati equation (DARE).

Suppose that instead of having full state feedback, only certain (noisy) outputs are mea-
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sured. We tbus consider the system

Xk+1 = AXk+Buk+Gwk

yk = CXk + Vk (6.119)

k = [HXk]

and assume that vk E 12, and [A, C] is detectable in addition to the assumptions made for

the system (6.50). The problem is set up in a manner fully analogous to the continuous case.

Thus, we adjoin to (6.71), the linear time-invariant controller

k+1 = Ak + Bik + Gtbk + L(yk - CXk) (6.120a)

fik = Kk (6.120b)

where K is given by (6.55) for given -y, and where fA and tv are estimates of the optimal control

ard "worst disturbance" from the state-feedback solution. The actual "worst disturbance",

tv is a disturbance that achieves the maximum input/output (I/0) energy ratio, i.e.,

S= arg max IT(z)w(z)li 2  (6.121)
WE12 W*o I1w(z)11i 2

where To(z) = Ho(zI - E)'G, , E = A + BK. It can be shown [40] that there

exist "stochastic" disturbances in 12, that achieves I/O energy ratios as high as that of fv,

1which can be shown to be realizable in feedback form,

tWk = KdXk, Kd = -1GTP [I + (BB--T GGT) Pj A (6.122)

and where P is the stabilizing solution of (6.53).

Using the structure (6.120), we seek the matrix L to achieve stability and guarantee a

lesired Ho-norm bound. To this end we form the closed loop system:

k+l[LC AC-LC][jk+[ ] kL

with the output

[H[ (6.1236)
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where A, = [I + (BB - - GGT)F 'A = A -BK + GKd. Let e = x - ., and introduce

the transformation

e=z=~ -][1 (6.124)

and apply it to (6.123) to obtain

Xk+E = LI'jBK ] [w~ [~i + GL] [b ] (6.125)k,= -GKd A +GK - LCI el G - V

and

HI [:- KH k . (6 126)

The central result of this section defines an observer-based controller that satisfies an uniform

Ho-norm bound, anid can be stated as follows:

Theorem 6.13. If there exists P > 0 satisfying

P=HTH+AT p[I + (BBT - GGT) P] A, (6.127)

with - > 0 and

It 2 I - GT PG > 0 (6.128)

and if there exists V > 0 that satisfies

V = 1HTH - CTC + ATV[I - GGTV]-lA, (6.129)

with

2V > HTH+ATP I1- GGTp A (6.130)

ancP if the gain matrix L is chosen to be

(= -V-P A (V+CTC- HTH) CT (6.131)

then for T(z) = Ho(zI - Eo)-'Go we have

a) Eo is stable, and

b) <1
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Thus the solution of the problem is given in terms of two uncoupled Riccati equations,

as in the continuous case.

A related result has been obtained by [70]. However, their conclusions are again based on

the "perfect information" case. In addition, the solution of that problem is given in terms

of two coupled Riccati equations.

The proof of Theorem 6.8 will be based on the relationship between the discrete algebraic

Riccati equation (DARE) of dynamic games, and its relationship to a nonsymmetric, gener-

alized, algebraic Riccati equation (GARE), and will be given in the next section. This novel

approach also gives insight into the problem, using results in [76] regarding the solution of

generalized Riccati equations.

6.3.7 The generalized Riccati equation

Recall the DARE

P = HTH + ATp I+ (BBT - 1GGT) T ]- A (6.132)

and the associated symplectic matrix

$ = A+ (BBT GGT) A-THTH (BBT 1 GG)T AT (6.133)
-A ATH TH A-T

We now consider the GARE

X =(ATX + HTH) [A - (BBT - 1GGT) x] (6.134)

or

-XAAT [I + HTH (BBT - GG) AT X_ (BBT - GG) X-A .HHA = 0.

(6.135)

This is a continuous-time ARE, and has as its associated generator matrix

-A-TTHA A-T [I+ H(T BBT) ] (6.136)
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It can be shown [26] that $ is z symplectic matrix since for U - [ 1 1 we have

U-$TU = $-1. It can be shown that , on the other hand, is neither symplectic (since

U-,TU #-, nor Hamiltonian (since U-ITU # - ) [26]. However, like $, the matrix

has the property that if A is an eigenvalue of , then 1/A is also an eigenvalue. Indeed, we

have:

Lemma 6.14. $ and have the same spectrum.

Proof. If two matrices T, and T2 are square, then the spectrum of the product T1T2 is the

same as the spectrum of T2T1 . Examining $ and , we have

$ A (BBT ~GGT) ] [0AIT TTT

I A ] [A (BBT-12GGT) T2T.-A-THTH A-T 0I

11

Remark 6.6: We take note from the proof of Lemma 6.14 that the invertibility of T1 and

T 2 depend only on the invertibility of A. Thus, if A is invertible, then neither $ nor have

zero eigenvalues. Thus the "-osed-loop" matrix

AC= A- (BBT - 2GG) A-T(p - HT H), (6.137)

(which arises in Lemma 1.2), has no zero eigenvalues, and is thus invertible. 0]

Suppose the matrix A contains a subspectrum of . The next Lemma demonstrates the

relation between the GARE and , based on [76].

Lemma 6.15. If = A, then X solves (6.135).

Proof If

7A
[A-rHTHA A -I+ HT (BBT GG) ] [1 =[I] A
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then

A- (BBT - GGT)X=A, (6.138)

-A-T HT HA + A-T[I + HT H (BBT - 2GGT) A -T]X = XA, (6.139)

and from (6.138), (6.139) follows

-HTHA + [I + HTH (BBT - GGT) A-T]X = ATXA,

- ATX [A - (BBT 1 2GGT) xT ]

or

(ATX + HTH)A - [I + (ATX + HTH) (BBT_ 1 GGT)] X =0, (6.140)

which reduces to

(ATX + HTH) [A - (BBT- -GGT) X] -X =O.

0

If p(A - (BBT - GGT) X) < 1, (i.e., p(A) < 1 by (6.138)), then X is called the

stabilizing solution of (6.135). Note that instead of the vectors [ , we may use the Schur

vectors X if A is in real Schur form, or the eigenvectors [ if A is in Jordan form,

giving X = X 2Xj 1 (or X = Y2Yf- 1 ) as a solution of (6.135). Also nctc that unlike the

solution P, of the DARE (6.53), the solution X of the GARE is non-symmetric, while ATX,

however, is symmetric. We now demonstrate the relationship between the solutions of the

GARE and the DARE.

Lemma 6.16. If X and P are related by ATX = P - HTH and

[I+P(BB T lGGT)]-

exists then P solves (6.53) iff X solves (6.135). Moreover, P is the stabil.zing solution to

(6.53) if" X is the stabilizing solution to (6.135).
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Proof. By the Remark 6.5, we know that A - BBT - GGT AT(P - HTH) exists.

Also, by hypothesis, we have

X = A-T(P - HTH). (6.141)

To prove the first assertion, note that X solves (6.135) if

(ATX + HTH) [A - (BBT- 12GGT) x] - x =0.

By (6.141) the above expression is equivalent to

P [A- (BBT - 1GGT) A-T(p- HT H)] - A-T(p - HTH) =0 (6.142)

which is equivalent to

(I + P (BBT- 1GGT)) A-T(P - HTH) = PA

or

A-T(p - HT H) = (I + P (BBT - 2 GGT)) PA. (6.143)

On the other hand, expression (6.142) is equivalent to

HTH- P + ATPA - ATp (BBT- GGT) A-T (P- HTH) =0. (6.144)

In light of (6.143) and (6.144), expression (6.142) is equivalent to

0 = HTH - P + ATPA - ATp (BBT -1GGT) (I+ P (BBT - 1-2 GGT)) PA

=H TH-P + AT {I+ P BB T_ 1 GG r )  P ( B B T _ 1 G G T )

(I + P(BBBT G ))GP

(ITH-+AB T I GBT 1  GG T)}

=H T H P+ATp(I+BB T_1 GGT)P 1 A,

and so P solves (6.53) if X solves (6.135). For the proof of the second part, we have from the

proof of Lemma 6.15 that X is the stabilizing solution of (6.135) if A - (BBr - -1GGT) X
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is a stability matrix. But

AC= A- (BBT - - GGT) A -T(p- HTH) = A- (BBT- - GGT) X,

which, by (6.137) is stable if P is the stabilizing solution of (6.53). 0

Remark 6.7: When P-1 exists and P solves (6.53), the condition P > HTH is equivalent

to P- 1 > !GGT - BBT. In Corollary 6.1, we note that the condition 721 - GTPG > 0,

is equivalent to P > -. GGT, when P- exists, since p1 2 (P-1- -GGT) p1/2 > O is

equivalent to I - 7GTp1/2 P/ 2 G > 0, and implies that P> HTH. Thus, in Corollary 6.1,

when P-1 exists, P > HTH is equivalent to y2I - GTPG > 0.

Remark 6.8: Lemma 6.16 was proved for R1 = HTH > 0 and R 2 = BBT - -GGT, which
7 2

is sign-indefi ite. The proof, however does not depend on the sign definiteness of R 1, and

can be useJ for indefinite R 1. This fact will be exploited in the observer equations.

The motivation for using the GARE, instead of the DARE in the proof of Theorem 6.13

is that, by using the GARE, we arrive at expressions that, as will be shown, are similar

to the corresponding continuous-time expressions, e.g., K = -BTX, Kd = 1-2GTX [1],

[13]. This similarity serves two purposes: First, it simplifies the expressions. Second, and

perhaps more important, it provides insight from the results on the observer-based Ho,-norm-

bounding problem in the continuous-time case, and provides guidelines for the solution of

the discrete-time problem.

In many optimal control problems, duality plays an important role. In the search for a

solution to the present problem, we again seek to exploit duality as was successfully accom-

plished in the continuous problem [1]. Thus, we consider an observer DARE,

Q = GGT +AQ [I+ (CrC-1-2HTH) QIA. (6.145)

which is the dual of the control DARE (6.132). We expect, by analogy, that the condition

7 I - HQHT > 0, will be nec:essary; it implies that V - 1 = Q > GGT. No~e that V satisfies

V = 12HTH - CTC + ATV[I - GGTV]-A, (6.146)
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which is the DARE found in Theorem 6.13. Along with V, by fully analogous development,

we associate with the DARE (6.146) the GARE

W= (ATW + 1.2HTH - CTC) (A + GGTW), (6.147)

where W is related to V by

ATw = V - I2HTH + CTC. (6.148)

We now return to the proof of Theorem 6.13.

Proof of Theorem 6.13: DefineP= P  ] where P = .2V _p. Using Corollary 6.1,

we desire to show that with L given by (6.131), P is positive definite and satisfies

P = HTH + ETP I - 1 GrTGP E. (6.149)

7z- roGo >0 (6.150)

Hence, by Corollary 6.1, the closed-loop system is stable and its Ho, norm is bounded by 7.

Transforming the DARE to the associated GARE, leads to X satisfying

X= (E19 + H Ho) (E, + GoG Tf). (6.151)

We now show that X of the form

X=[X X 2 (6.152)

where X is the stabilizing solution of (6.135) while X 12, and X 22 satisfy

ETX 12 = (K T GTX 22 + KTK), (6.153)

X2= -2W_ X12 - X, (6.154)

solves the GARE (6.151). We then conclude, by the use of Lemma 6.16, that P is related

to X via

ETX = P - HIH > HTHo, (6.155)
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also satisfies (6.150) and th, s is the desired solution to the DARE (6.149).

Let
GiC 12  (EX 6.56

2[,1 G 2 2  
E]- X + H.H) (Eo, GX) - (6156)

and so (6.151) is established if Gil = G1 2 = 321 = = 0. Note first that using (6.153),

and the definitions of Kd and K, that
FET -KTGT X X 12] [HTH+KTK -KTK 1

EXT+ HH. = -KTBT (A + GKd - LC) T I[0 X 22 + -KTK KTK

[ ETX + H TH + KTK ETX 12 - KTGTX 22 - KTK
-KTBTX - KTK (A + GKd - LC)TX 22 - KTBTX 12 - KTKJ

0 [ (A - LC)TX 22 + ATX 12 .

(6.157)

We also have

E I. ~ 0 TX E BK 1[GG T GG T 12
0 -GKd A+ GKd-LC GGT GGT + LLT I0 X 22

= 0 A, +N + L. :LX22 - C

(6.158)

where

N = -BK + -IGGT(X12 + X 22). (6.159)

Thus, equation (6.156) becomes

Gi[l1 G12 ] [ATX +H TH 0 1 A, N
G21 G22  0 (A - LC)TX 22 + ATX 12  0 A, + N +L ILTX22 - C

0 X22

(6.160)

This gives

Gil = (ATX + HTH)A, - X = (ATX + HTH) [A (BBT - GGT) X] _ X

= 0,
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by (6.134) and Lemma 6.16. Next, note by inspection that G 21 = 0. Introduce M =

BBTX + 1 GGT X 22, and observe that
-7

G12 = (ATX + HTH)N- X12

= (ATX + HTH) [BK + IGGT(X2+X22) E-TXTM

= (ATX + HTH) (M + GGTE-TXTM -E-TXTM

= (ATX + HTH) (X-TET + I GGT) E-TXTM - E-TXTM

- {(ATX + HTH)X-T(ET + 1XTGGT - I} E-TXTM

= {pX-TA T - I}E-TXTM

= {PP-1 - I}E-TXTM = 0.

Before proceeding to establish that G 22 = 0, we first note from (6.153) and (6.154), that

X= 7
2 W - X2 - X = - X - ET(K GTX 2 2 + KTK), (6.161)

which implies that

(I + E-TK TGT)X 22 = -yW - X - E-TKTK, (6.162)

and so

ATX 22 = (ET + KTGT)X 22 = ET(I + E-TKTGT)X22

= ET(-t2W __ X - ETKTK) = -y2ETW - ATX + KTK - KTK

= 7'ETAT(ATW) - ATX (6.163)

= -y2ETA-T V - -HTH + CTC - P + HTH.

From (6.163)
X~~~" r 1 T 1 i

2= [7 E A (V - 7 HR + T)-P+H H]T AC
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and so

an so -- A 2 [~E TAT(V_ -H ~T H + CTC) - P + HT H]

Now, using the definition of A, from (6.137), and using (6.141) to relate X and P produces

S( 1 2 GGT A-T(2V - HTH + y2CTC) - A;TATX

while from (6.146) and the facts that X = PAc and that ATX is symmetric we have

1= P -- 1 2GGT] [(12V)- _1 2 GG] A - PAX 2 1 I 1^ -1

= P{P- LGGT - (_t2V)- + GGT} [(2V)-- GGT] A

and using again (6.146) this finally produces

X 22= (I- 1 PV-' A-T (72V -HTH +72CTc). (6.164)

Therefore (6.131) simplifies to

XTL = (6.165)

Now consider G22. Since Gil = G 12 = 0, then G 22 = G 22 + Gil + G 12 and so we proceed to

show that this sum is equal to zero. We have

G 22 = G22+Gi+G12

= [(A - LC)TX 22 + ATX 12] [Ac + N + L (iL"X 22 - C)] -X22

+(ATX + HTH)AC - X + (ATX + HTH)N - X 1 2

- [(A- LC)TX 22 + ATX 1 21 [A, + N + L ( 1LTX 22 -C)] -(X+X 12 +X 22 )

+(ATX + HTH)(AC 4- N)

= [(A - LC)TX 22 + ATX 1 2 + ATX + HTH] [A,+N+L (LTX 22 - C)]

-(X + Xl 1 + X 22) - (ATX + HTH)L (LTX 22 -C)

= [AT(X + X 12 + X 22) + HTH -CTLTX 22] [A + N + L (LTX 22 - C)]

-(X + A 1 + X, 22) - (ATX + HTH)L (LTX 22 -C)
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and using (6.154) and (6.147), as well as equations (6.146), (6.157) and Remark 6.7,

G22 = [AT(712W) + HTH - .12CTC - CT(LTX 22 -, 2C)]

x [A + GGTW + L (LTX 22 - C)]

-(-2W) - (ATX + HT H)L (LTX 22 - C)

= 72{[ATW+ HTH- _ CTC][A+GGTW]-W}=O

and thus, (6.151) is satisfied. Now consider (6.155). We have, from (6.151)
E~X THo " ATX + HTH 0]

EfT + [AX0 (A - LC)TX 2 2 + ATX 1 2

[ATX + HTH 0 1
0 0 2ATW - ATX - 2CTC[ 0 (6.166)

0 2 (V- HTH+CTC> P+HTH--2CTC

[ 2V p]P.= 0 7 =

Now P is positive definite if P = 72V - P is positive definite, and this is established using

(6.127), and (6.130):

7 2Vp > HTH+AT P-1 GGT A-P
S -1(6.167)

> HTH+AT [P- + BBT GGT A - P =0;

thus, (6.155) is established by (6.166) and (6.167). Finally, consider (6.150). We wish to

show that conditions (6.128) and (6.130) imply

21- GT PGo > 0.

We recall from Remark 6.7, that (6.150) is equivalent to P > HTHo, which we will demon-

strate. Since P satisfies (6.127), then

(P - HTH)_, - A_ BBTAT = A (P_ 1GGT AT,
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and so conditions (6.128) and (6.130) imply that

y2 V > HTH + [(P - HTH)- - A-1BBTA-T-I > 0

or

(Pi + P - HTH) > [(P - HTH)- ' - A-BBTA-T] - i > 0 (6.168)

since 7
2V = P1 + P. Since P > HTH, then (6.168) holds if

(P - HTH)- ' - A-BBT A - T > (P + P - HTH)- ' > 0,

which is equivalent to

(P - HTH){(P - HTH)- ' - A-'BBTA..-T - (P1 + P - HTH)-}(P - HTH) > 0. (6.169)

Since K = -BTA-T(P - HTH), using (6.169) we can write

KTK = (P- HTH)A-BBTA-T(p - HTH)
< (P- HTH){(P - HTH)- I -(P + P - HTH)-'}(P - HTH)
= [(P - HTH)- 1 + Pf']-'.

This leads to

I > K[(P - HTH)- 1 + Pl1]KT

= K[I-I][P-H T H 0 T ] - T .

Thus, conditions (6.128) and (6.130) imply that

0 < P-kTk
= 0PHT IKTK[I I]PHH

Pemark 6.9: The structures of L and K in this problem (i.e., K = -BTX and LTx 2  -

-Y2C) are similar to those of the continuous-time solutions, though they are not intuitive from

the DARE equations. The use of the GARE framework thus provides an elegant solution to

this problem. Numerically, the computation of the GARE itself should also be more robust,

since no inversions are required.
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Remark 6.10: If the worst disturbances are assumed, i.e.,

-- - Go X ,

then the total closed-loop matrix becomes

E+IG T - [ Ac TX A+ GTWr (6.170)Eo + oo 0 = .G

Since A + GGTW is the "closed-loop" matrix associated with the observer Riccati equation,

we see that the eigenvalues are the union of the control and observer closed-loop matrix

eigenvalues.

Thus, we have established the observer-based controller analogous to that in the

continuous-time case. The results here, because of the discrete Riccati equation structure,

have added conditions (6.128) and (6.130). Note that (6.130) is a condition on the relation-

ship between Riccati solutions (6.127) and (6.129). A similar condition is found in [48,1],

Theorem 31.

6.3.8 A lower bound on the optimal Ho, norm

As in the case of the state-feedback control for - > t,., it is possible to obtain both an

upper and lower bound on the minimal achievable Ho, norm when observer-based controls

are used. Let -to be the the minimal achievable Ho. norm using a controller of the form

presented here, such that for all - > -,, there exist P, V and L satisfying (6.127) - (6.131).

The next theorem gives a lower bound on the value of -y.

Theorem 6.14. If there exist positive-definite P and V such that

=I + BB T - 1 P2r T A
A T d L j 1 I .j 7 J T ) P ] A'Y'V = HTH _ -2CTC + . 2ATV[I - GGTV]-1 A

with -t > 0, - 2 I - GTPG > 0, and 3y2V > HTH + ATp I - -LGGT p A, then

ax  [HTH + ATp I- -2GGTp A] V- 1 } y < -. (6.171)
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The proof of the theorem requires two technical Lemmas relating the monotonicity of

solutions of the DARE with respect to -y.

Lemma 6.17. P( 7 ) - 1 - 12GGT] is monotonically increasing in - for -y E (-yo, 0).

Proof. By Theorem 6.7, P(-t) is monotonically increasing for -t E (7Ywn, oo). It can be easily

shown that -to _2 7 ,, and so P(7I) is monotone in (-y° , oo). Thus, for yt > 72 > 70 > 7mn,

it follows that P( 7 1) < P(7 2) < P(7y°, and so P(-hy)- 1 > P(7 2 )- ' > P(yo)-1 . We also have

that -1 GGT > -1GGT > - 1GGT, and thus we have
1 72 02

- GGT> -P(2 )' 1GGT > ()- GG T.
71 72

Therefore,

[PbO- - 1GGT <_ [p(7 2)-l - 12GG0T- < [p(,)- - 1GGT]

Lemma 6.18. V(-/) is monotonically increasing in 7 for 7 E (70, 00).

Proof Recall that if Q is the stabilizing solution of (6.86a), by analogy with Theorem 6.7,

Q is monotonically decreasing in 7 for 7 E (9Jii, oo), where 5'" is the smallest 7 associated

with the (dual) observer problem. It is easy to show that -y0 > i. Thus, Q is monotonically

decreasing in (70, oo), and so V = Q- 1 is monotone increasing there. 0

Proof of Theorem 6.14: The upper bound follows from the definition of -Y° . To prove the

lower bound, we have to show that for e > 0

(7 + C)2 V( 7 ) - H T H + AT P(t)-' - 1 2 GGT A.

Without loss of generality, we can choose e > 0 such that 7 - 70 > e > 0. By Lemma! 5.17

and 6.18, we have that

(70 + e)2v ( t) >_ (70 + e) 2 V(-y° + f)

> HTH + AT p(7 +,E)-' ( GGT A

> H T U + AT (P(- - -- 2IGGT) A.
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7 CONCLUSION

The research described in this report has provided many new results and research direc-

tions. These include the FH-norm-optimal low-order controller design problem with con-

trollers restricted to belong to the class of projective controllers, the ARE-inequality based

approach to designing Ho,-norm suboptimal full order controllers and its application to the

decentralized control problem using full order controllers, the development of design equa-

tions for control systems reliable with respect to sensor and actuator outages, the design of

strongly stable systems and decentralized control systems reliable with respect to a loss of

certain control channels. In addition, initial results were obtained in the output-feedback-

based H, -norm-bounding controls for discrete systems based on the transformation of the

DARE to the GARE. These results include both an upper and a lower bound on the value of

the H,, norm. Parametrizations of state-feedback and output-feedback controls that provide

a specified bound on the H,, norm were also obtained.

The design of low-order controllers reduces ultimately to a nonlinear optimization prob-

lem, or to a problem of extracting elements of a subset to obtain a suboptimal solution. In

this respect we have combined the projective controls approach with FH-norm optimization

to simplify the computational aspects. The use of projective controls provides a convenient

way of parametrizing the entire class of controllers of a given order that retain the dominant

dynamics of a reference, state-feedback controlled system, which is computationally easy to

design and adjust. Moreover, it provides a systematic procedure for retaining more reference

dynamics by gradually increasing the controller order and the number of free design parame-

ters. The FH norm provides a physically meaningful and computationally attractive criterion

for optimal and suboptimal controller design. In particular, the possibility of transforming
the parametrized class of projective controllers to a form linear in the free parameters has

enabled the efficient application of FH-norm optimization to the optimization of the free

design parameters in the parametrized class of projective controllers.

The described methodology for designing full order output feedback controllers with a

guaranteed Ho. norm bound highlight the possiblity of achieving additional important design
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goals with controllers of the same order as the plant. Considered here in detail is the problem

of designing reliable controllers, and design equations have been developed which achieve

reliability at the expense of an increase in the guaranteed bound on the Hoo-norm for both

the base configuration and when certain outages of sensors or actuators occur. Results on the

parametrization of classes of output feedback controllers that achieve an H',-norm bound we

feel will allow a further and systematic development and evaluation of multiatribute designs.

Finally, the DARE to GARE transformation and the resuilts already obtained concering the

deeign equations for full order based output feedback control and the convexity properties

of the discrete Riccati operator will, we expect, allow the results and insight gained from the

analysis of the continuous control problems to be carried over to discrete contrcl problem.
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